Browsing by Author "Baynes, Timothy M."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemEnvironmental and natural resource implications of sustainable urban infrastructure systems(IOP Publishing, 2017) Bergesen, Joseph D.; Suh, Sangwon; Baynes, Timothy M.; Musango, Josephine KavitiAs cities grow, their environmental and natural resource footprints also tend to grow to keep up with the increasing demand on essential urban services such as passenger transportation, commercial space, and thermal comfort. The urban infrastructure systems, or socio-technical systems providing these services are the major conduits through which natural resources are consumed and environmental impacts are generated. This paper aims to gauge the potential reductions in environmental and resources footprints through urban transformation, including the deployment of resource-efficient socio-technical systems and strategic densification. Using hybrid life cycle assessment approach combined with scenarios, we analyzed the greenhouse gas (GHG) emissions, water use, metal consumption and land use of selected socio-technical systems in 84 cities from the present to 2050. The socio-technical systems analyzed are: (1) bus rapid transit with electric buses, (2) green commercial buildings, and (3) district energy. We developed a baseline model for each city considering gross domestic product, population density, and climate conditions. Then, we overlaid three scenarios on top of the baseline model: (1) decarbonization of electricity, (2) aggressive deployment of resource-efficient socio-technical systems, and (3) strategic urban densification scenarios to each city and quantified their potentials in reducing the environmental and resource impacts of cities by 2050. The results show that, under the baseline scenario, the environmental and natural resource footprints of all 84 cities combined would increase 58%–116% by 2050. The resource-efficient scenario along with strategic densification, however, has the potential to curve down GHG emissions to 17% below the 2010 level in 2050. Such transformation can also limit the increase in all resource footprints to less than 23% relative to 2010. This analysis suggests that resource-efficient urban infrastructure and decarbonization of electricity coupled with strategic densification have a potential to mitigate resources and environmental footprints of growing cities.