Browsing by Author "Amayo, Angela"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemComparison of equations for estimating glomerular filtration rate in screening for chronic kidney disease in asymptomatic black Africans : a cross sectional study(BioMed Central, 2017-12-20) Omuse, Geoffrey; Maina, Daniel; Mwangi, Jane; Wambua, Caroline; Kanyua, Alice; Kagotho, Elizabeth; Amayo, Angela; Ojwang, Peter; Erasmus, RajivBackground: Several equations have been developed to estimate glomerular filtration rate (eGFR). The common equations used were derived from populations predominantly comprised of Caucasians with chronic kidney disease (CKD). Some of the equations provide a correction factor for African-Americans due to their relatively increased muscle mass and this has been extrapolated to black Africans. Studies carried out in Africa in patients with CKD suggest that using this correction factor for the black African race may not be appropriate. However, these studies were not carried out in healthy individuals and as such the extrapolation of the findings to an asymptomatic black African population is questionable. We sought to compare the proportion of asymptomatic black Africans reported as having reduced eGFR using various eGFR equations. We further compared the association between known risk factors for CKD with eGFR determined using the different equations. Methods: We used participant and laboratory data collected as part of a global reference interval study conducted by the Committee of Reference Intervals and Decision Limits (C-RIDL) under the International Federation of Clinical Chemistry (IFCC). Serum creatinine values were used to calculate eGFR using the Cockcroft-Gault (CG), re-expressed 4 variable modified diet in renal disease (4v–MDRD), full age spectrum (FAS) and chronic kidney disease epidemiology collaboration equations (CKD-EPI). CKD classification based on eGFR was determined for every participant. Results: A total of 533 participants were included comprising 273 (51.2%) females. The 4v–MDRD equation without correction for race classified the least number of participants (61.7%) as having an eGFR equivalent to CKD stage G1 compared to 93.6% for CKD-EPI with correction for race. Only age had a statistically significant linear association with eGFR across all equations after performing multiple regression analysis. The multiple correlation coefficients for CKD risk factors were higher for CKD-EPI determined eGFRs. Conclusions: This study found that eGFR determined using CKD-EPI equations better correlated with a prediction model that included risk factors for CKD and classified fewer asymptomatic black Africans as having a reduced eGFR compared to 4v–MDRD, FAS and CG corrected for body surface area.
- ItemMetabolic syndrome and its predictors in an urban population in Kenya : a cross sectional study(BioMed Central, 2017-07-04) Omuse, Geoffrey; Maina, Daniel; Hoffman, Mariza; Mwangi, Jane; Wambua, Caroline; Kagotho, Elizabeth; Amayo, Angela; Ojwang, Peter; Premji, Zulfiqarali; Ichihara, Kiyoshi; Erasmus, RajivAbstract Background The metabolic syndrome (MetS) is a clustering of interrelated risk factors which doubles the risk of cardio-vascular disease (CVD) in 5–10 years and increases the risk of type 2 diabetes 5 fold. The identification of modifiable CVD risk factors and predictors of MetS in an otherwise healthy population is necessary in order to identify individuals who may benefit from early interventions. We sought to determine the prevalence of MetS as defined by the harmonized criteria and its predictors in subjectively healthy black Africans from various urban centres in Kenya. Method We used data collected from healthy black Africans in Kenya as part of a global study on establishing reference intervals for common laboratory tests. We determined the prevalence of MetS and its components using the 2009 harmonized criterion. Receiver operator characteristic (ROC) curve analysis was used to determine the area under the curves (AUC) for various predictors of MetS. Youden index was used to determine optimum cut-offs for quantitative measurements such as waist circumference (WC). Results A total of 528 participants were included in the analysis. The prevalence of MetS was 25.6% (95% CI: 22.0%–29.5%). Among the surrogate markers of visceral adiposity, lipid accumulation product was the best predictor of MetS with an AUC of 0.880 while triglyceride was the best predictor among the lipid parameters with an AUC of 0.816 for all participants. The optimal WC cut-off for diagnosing MetS was 94 cm and 86 cm respectively for males and females. Conclusions The prevalence of MetS was high for a healthy population highlighting the fact that one can be physically healthy but have metabolic derangements indicative of an increased CVD risk. This is likely to result in an increase in the cases of CVD and type 2 diabetes in Kenya if interventions are not put in place to reverse this trend. We have also demonstrated the inappropriateness of the WC cut-off of 80 cm for black African women in Kenya when defining MetS and recommend adoption of 86 cm.