Browsing by Author "Akwuruoha, Uzoma Nobe"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemDevelopment and evaluation of an electrochemical DNA based magnetic nanoparticle biosensor for detecting the fungal pathogen fusarium oxysporum f. sp. cubense(Stellenbosch : Stellenbosch University, 2024-03) Akwuruoha, Uzoma Nobe; Perold, Willem; Stellenbosch University. Faculty of Engineering. Dept. of Electrical and Electronic Engineering.ENGLISH ABSTRACT: Fusarium wilt caused by the soilborne fungus Fusarium oxysporum f. sp. cubense (Foc), is one of the most detrimental banana diseases worldwide. Foc is pervasive in practically all banana-growing regions and classical management strategies are not effective or economically viable options to control the pathogen. Prevention and containment are therefore vital to limit the spread of the pathogen. Regular and accurate surveillance stands central to the efficient co ntainment st rategy as it ca n in dicate wh ich co urse of action is most appropriate. Presently, the available methods for detecting fungus Fusarium oxysporum f. sp. cubense are limited by complex procedures, high expenses, and prolonged processing times. To combat these obstacles, the proposed research aims to develop a DNA-based electrochemical magnetic nanoparticle biosensor to enable rapid and precise detection of Foc. To this end this project investigates a low-cost DNA-based electrochemical magnetic biosensor for detecting Foc, using linear biotinylated DNA probes bound to streptavidin-coated magnetic beads, immobilised on gold surface screen printed carbon electrode. A squarewave voltammetric-based electrochemical technique was chosen to detect the presence of Foc. A gold surface screen printed electrode was selected as a transducer, with the biotinylated DNA probes bound to streptavidin-coated magnetic beads immobilised on the electrode workspace by a magnetic field. An e lectrochemical potentiostat device was used to electronically detect the change in current peaks resulting from the electrochemical reduction and oxidation reaction of DNA samples after immobilisation on the biosensor system.