Masters Degrees (Viticulture and Oenology)
Permanent URI for this collection
Browse
Browsing Masters Degrees (Viticulture and Oenology) by Author "Boshoff, Cornelis Johannes"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemA study of the interaction between grapevine vigour and water status for Vitis vinifera L. cv Merlot noir in Stellenbosch(Stellenbosch : University of Stellenbosch, 2010-03) Boshoff, Cornelis Johannes; Strever, A. E.; University of Stellenbosch. Faculty of Agrisciences. Dept. of Viticulture and Oenology.ENGLISH ABSTRACT: Grapevine water status is considered to be the most important factor limiting plant growth and production in the Mediterranean zones. In these regions with limited summer rainfall and limited water resources for irrigation grapevines may experience water deficits for an extended period of time. The demand of water for agriculture is constantly increasing, and will continue to do so due to the rise in the world population and to the effects of climate change on rainfall and evaporative demand in these regions. The Western Cape wine region is also classified as Mediterranean and grapevines grown in this region are often exposed to water “stress” conditions due to high evaporative demand and low water availability in the soil. Plant water status of grapevines may dependent on, amongst other factors, the water potential of soil layers close to the root system, canopy size and evaporative demand. The canopy size of a grapevine can inherently be seen as a measure of grapevine vigour, and vigour variation among grapevines within a vineyard is a common phenomenon in the Western Cape. The importance of the contributions from several factors causing vigour variation within vineyards is still a subject of debate. This may be largely ascribed to the significant amount of variability in vineyards that researchers have to deal with during viticultural studies. However, the recent advances in remote sensing technology have established new methods to assess grapevine vigour variability. In the face of the recognized variation within vineyards and the importance of a sustained grapevine water status, for wine grape productivity and -quality, it is alarming to think that a vineyard block is generally managed as a homogeneous entity when it comes to irrigation scheduling. What is more alarming is the assumption that grape, juice and wine quality will be homogeneous throughout a vineyard block – even without irrigation. With this in mind, a study was conducted to study the interaction between grapevine vigour and grapevine water status within a commercial vineyard with variable vigour by implementing various irrigation regimes. Vigour variation was identified through multispectral aerial imagery and plant-based water status determinants were used to assess grapevine water status in plots of differing vigour within the vineyard. Soil water status was also assessed, and vegetative growth quantified to ultimately determine the variability in vigour and its possible contribution to the variability through the water status of the plant. Reproductive growth was monitored continually before evaluating the effect of water status and grapevine vigour on grape composition and subsequent wine quality. The various methods used to evaluate grapevine vigour showed good correspondence. Pruning mass measured at the end of the season confirmed leaf area measurement (main leaves and lateral leaves) during vegetative growth, and corresponded well, in terms of main vigour classifications with the NDVI images collected. Berry weight and volume responded to the various classifications, with a decrease in water deficits from one classification to the next accompanying an increase in berry weight and volume. Analyses of the berry composition and wines showed statistically significant differences between the classifications. This was found for sugar content per berry, total phenols, total red pigment, malic acid, nitrogen and pH for the grape juice analyses. Wine pH and total acidity also differed significantly.