Doctoral Degrees (Earth Sciences)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Earth Sciences) by Author "Laurie, Angelique"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemThe formation of Earth’s early felsic continental crust by water-present eclogite melting(Stellenbosch : Stellenbosch University, 2013-03) Laurie, Angelique; Stevens, Gary; Stellenbosch University. Faculty of Science. Dept. of Earth Sciences.ENGLISH ABSTRACT: The sodic and leucocratic Tonalite, Trondhjemite and Granodiorite (TTG) granitoid series of rocks characterise Paleo- to Meso- Archaean felsic continental crust, yet are uncommon in the post-Archaean rock record. Consequently, petrogenetic studies on these rocks provide valuable insight into the creation and evolution of Earth’s early continental crust. The highpressure (HP)-type of Archaean TTG magmas are particularly important in this regard as their geochemistry requires that they are formed by high-pressure melting of a garnet-rich eclogitic source. This has been interpreted as evidence for the formation of these magmas by anatexis of the upper portions of slabs within Archaean subduction zones. In general, TTG magmas have been assumed to arise through fluid-absent partial melting of metamafic source rocks. Therefore, very little experimental data on fluid-present eclogite melting to produce Archaean TTG exist, despite the fact that water drives magmatism in modern arcs. Consequently, this study experimentally investigates the role of fluid-present partial melting of eclogite-facies metabasaltic rock in the production of Paleo- to Meso-Archaean HP-type TTG melts. Experiments are conducted between 1.6 GPa and 3.0 GPa and 700 ºC and 900 ºC using natural and synthetic eclogite, and gel starting materials of low-K2O basaltic composition. Partial melting of the natural and synthetic eclogite occurred between 850 ºC and 870 ºC at pressures above 1.8 GPa, and the melting reaction is characterised by the breakdown of sodic clinopyroxene, quartz and water: Qtz + Cpx1 + H2O ± Grt1 = Melt + Cpx2 ± Grt2. The experimental melts have the compositions of sodic peraluminous trondhjemites and have compositions that are similar to the major, trace and rare earth element composition of HPtype Archaean TTG. This study suggests that fluid-present eclogite melting is a viable petrogenetic model for this component of Paleo- to Meso-Archaean TTG crust. The nature of the wet low-K2O eclogite-facies metamafic rock solidus has been experimentally defined and inflects towards higher temperatures at the position of the plagioclase-out reaction. Therefore, the results indicate that a crystalline starting material is necessary to define this solidus to avoid metastable melting beyond temperatures of the Pl + H2O + Qtz solidus at pressures above plagioclase stability. Furthermore, this study uses numerical and metamorphic models to demonstrate that for reasonable Archaean mantle wedge temperatures within a potential Archaean subduction zone, the bulk of the water produced by metamorphic reactions within the slabs is captured by an anatectic zone near the slab surface. Therefore, this geodynamic model may account for HP-type Archaean TTG production and additionally provides constraints for likely Archaean subduction. The shape of the relevant fluid-present solidus is similar to the shape of the pressure-temperature paths followed by upper levels of the proposed Archaean subducting slab, which makes water-fluxed slab anatexis is very dependant on the temperature in the mantle wedge. I propose that cooling of the upper mantle by only a small amount during the late Archaean ended fluid-present melting of the slab. This allowed slab water to migrate into the wedge and produce intermediate composition magmatism which has since been associated with subduction zones.