Final year projects (Baccalaureus Theses) (Industrial Engineering)
Permanent URI for this collection
Browse
Browsing Final year projects (Baccalaureus Theses) (Industrial Engineering) by Author "Treurnicht, Maria Jacoba"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemTelemedicine for primary healthcare : development of a decision support framework for a clinical pull approach to telemedicine implementation(Stellenbosch : Stellenbosch University, 2009-11) Treurnicht, Maria Jacoba; Van Dyk, L.; Stellenbosch University. Faculty of Engineering. Dept. of Industrial Engineering.ENGLISH ABSTRACT: Telemedicine refers to the delivery of healthcare services by means of information and communication technology (ICT). Telemedicine, being an ICT, has appealed to engineers as an opportunity for innovative development, making technology the primary driver of telemedicine development. This technology-push model where engineers pursue challenging technological goals primarily does not guarantee appropriate and quality healthcare. It is therefore also necessary to assess the true need of the population and develop a comprehensive framework to implement and develop technology only as a means and not a goal in itself. The Medical Research Council (MRC) and Stellenbosch University (SU) department of Electrical and Electronic engineering jointly developed a telemedicine workstation, specifically for primary healthcare in South Africa. This workstation ensures effective communication between healthcare facilities to capture and send diagnostic data of patients between the facilities. Although the technology-push approach followed was successful, further development of the workstation requires a clinical-pull approach to address the specific needs of the population. The purpose of this project is therefore to support decision making with respect to the future development and implementation of telemedicine workstations. A decision support framework is developed and validated using the MRC/SU telemedicine workstation as a reference. The decision support framework developed in this project can be used as a tool for developing regional telemedicine strategy. Future use of this tool requires the population of a data warehouse developed in this project by extracting, transforming and loading data from clinical data sources. The data warehouse serves as a platform for specification analysis and mathematical models to evaluate possibilities for telemedicine in the region. The data sources for this project are health information systems and patient files. Data are extracted from the patient files, transformed and loaded into a database, developed for this purpose. Data from three facilities (Grabouw Community Health Centre, Robertson- and Ceres Hospitals) in the Western Cape are used, representing a region relevant for telemedicine lementation. The data warehouse is populated from the data loaded into the database to package the data in a usable format for data analysis. Diagnosis data together with telemedicine device profiles are used in the data analysis.The possibility of telemedicine implementation at a facility is evaluated using mathematical models. Engineering economics are used to determine the economic feasibility of a basic telemedicine workstation at a chosen facility. Potential telemedicine device utilisation at this facility is evaluated using mixed integer programming. This study serves as a pilot project to develop and validate the decision support framework. The scope of this project is limited to a specific region suitable for telemedicine workstation implementation. This project is therefore not aimed to provide only general solutions for telemedicine. It is a generic tool to enable decision makers to implement telemedicine as a needs driven technology in specific regions in South Africa.