Conference Proceedings (Computer Science)
Permanent URI for this collection
Browse
Browsing Conference Proceedings (Computer Science) by Author "Kroon, Steve"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemLearning dynamics of linear denoising autoencoders(PMLR, 2018) Pretorius, Arnu; Kroon, Steve; Kamper, HermanDenoising autoencoders (DAEs) have proven useful for unsupervised representation learning, but a thorough theoretical understanding is still lacking of how the input noise influences learning. Here we develop theory for how noise influences learning in DAEs. By focusing on linear DAEs, we are able to derive analytic expressions that exactly describe their learning dynamics. We verify our theoretical predictions with simulations as well as experiments on MNIST and CIFAR-10. The theory illustrates how, when tuned correctly, noise allows DAEs to ignore low variance directions in the inputs while learning to reconstruct them. Furthermore, in a comparison of the learning dynamics of DAEs to standard regularised autoencoders, we show that noise has a similar regularisation effect to weight decay, but with faster training dynamics. We also show that our theoretical predictions approximate learning dynamics on real-world data and qualitatively match observed dynamics in nonlinear DAEs.
- ItemN-gram representations for comment filtering(ACM, Inc., 2015-09) Brand, Dirk; Kroon, Steve; Van der Merwe, Brink; Cleophas, LoekAccurate classifiers for short texts are valuable assets in many applications. Especially in online communities, where users contribute to content in the form of posts and comments, an effective way of automatically categorising posts proves highly valuable. This paper investigates the use of N- grams as features for short text classification, and compares it to manual feature design techniques that have been popu- lar in this domain. We find that the N-gram representations greatly outperform manual feature extraction techniques.
- ItemUnsupervised pre-training for fully convolutional neural networks(Institute of Electrical and Electronics Engineers, 2016) Wiehman, Stiaan; Kroon, Steve; De Villiers, HendrikUnsupervised pre-training of neural networks has been shown to act as a regularization technique, improving performance and reducing model variance. Recently, fully con-volutional networks (FCNs) have shown state-of-the-art results on various semantic segmentation tasks. Unfortunately, there is no efficient approach available for FCNs to benefit from unsupervised pre-training. Given the unique property of FCNs to output segmentation maps, we explore a novel variation of unsupervised pre-training specifically designed for FCNs. We extend an existing FCN, called U-net, to facilitate end-to-end unsupervised pre-training and apply it on the ISBI 2012 EM segmentation challenge data set. We performed a battery of significance tests for both equality of means and equality of variance, and show that our results are consistent with previous work on unsupervised pre-training obtained from much smaller networks. We conclude that end-to-end unsupervised pre-training for FCNs adds robustness to random initialization, thus reducing model variance.