Doctoral Degrees (Viticulture and Oenology)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Viticulture and Oenology) by Author "Bester, Michael Christiaan"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemThe control of cellular adhesion of Saccharomyces cerevisiae by the FLO gene regulator Mss11p(Stellenbosch : University of Stellenbosch, 2010-03) Bester, Michael Christiaan; Bauer, Florian; University of Stellenbosch. Faculty of Agrisciences. Dept. of Viticulture and Oenology. Institute for Wine Biotechnology.ENGLISH ABSTRACT: The yeast Saccharomyces cerevisiae senses change within its environment and responds through specific adaptive cellular programmes, in particular by modifying gene expression. Many adaptive changes affect the physico-chemical properties of the cell wall, and several mechanisms that specifically affect the expression levels of genes that encode for cell wall components have been described previously. Cell wall modification directly impacts on general cell wall properties and cell-cell and cell-surface interactions. Many of these properties have been directly linked to families of cell wall proteins referred to as adhesins. In particular members of the Flocculation (FLO) gene family have been shown to play a crucial role in adhesion phenotypes. Flo11p functions in a variety of phenotypes including agar invasion, plastic adhesion and the formation of pseudohyphae, “flor” and “mats”, whereas Flo1p appears to control flocculation. The regulation of FLO11 expression is well documented and is mainly controlled by the mitogen activated protein kinase (MAPK) and cyclic AMP protein kinase A (cAMP-PKA) signalling cascades. Genetic analysis shows that Mss11p acts downstream and is central to these pathways, and furthermore interacts with the cAMP-PKA component Flo8p to activate transcription. In this study we further explore additional gene targets of Flo8p and Mss11p, as well as their regulation and their impact on cell wall characteristics and associated adhesion phenotypes. Our analysis shows that Mss11p is also required for FLO1 expression, and functions together with Flo8p to control many Flo-dependent adhesion phenotypes. Genome-wide gene expression analysis further reveals that altered Mss11p levels leads to the change in the expression of various cell membrane and cell wall genes, notably AQY2 and members of the DAN and TIR gene families. Further genetic analysis indicates that adhesion phenotypes display an almost exclusive dependence on FLO gene expression. We also demonstrate that these phenotypes require Flo10p and are thus dependent on the specific balance of Flo proteins in the cell wall. The analysis of signalling deletion mutants show that regulation of FLO10 shares signalling components with FLO11, but that the two genes are differentially regulated. Unlike FLO11, FLO10 transcription also does not display an absolute requirement for Mss11p but rather for the MAPK component Ste12p. Whole genome expression analysis were also performed on strains with altered levels of Flo8p which were compared with the above mentioned transcriptome data set. This analysis shows that Flo8p and Mss11p co-regulate the FLO genes, as well as AQY2 and TIR3, but also have significant unique gene targets. The combination of transcriptome data with current information concerning transcription factor (TF) interaction networks reveals the importance of network interaction between Cin5p, Flo8p, Mga1p and Mss11p. From these data we constructed a TF interaction model in which Flo8p acts as the predominantly activating TF component, whereas Mss11p function as a target hub TF, possibly as a mediator- or polymerase II holo-enzyme component. Finally we provide a first report on “mat” formation by an industrial wine yeast strain, and show that by adjusting FLO11 expression in this strain we are able to significantly change this phenotypic behaviour.