Doctoral Degrees (Industrial Engineering)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Industrial Engineering) by Author "Croucamp, Marco"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemEvolutionary algorithms for robot path planning, task allocation and collision avoidance in an automated warehouse(Stellenbosch : Stellebosch University, 2022-04) Croucamp, Marco; Grobler, Jacomine; Stellenbosch University. Faculty of Engineering. Dept. of Industrial Engineering.ENGLISH ABSTRACT: Research with regard to path planning, task allocation and collision avoidance is important for improving the field of warehouse automation. The dissertation addresses the topic of routing warehouse picking and binning robots. The purpose of this dissertation is to develop a single objective and multi-objective algorithm framework that can sequence products to be picked or binned, allocate the products to robots and optimise the routing through the warehouse. The sequence of the picking and binning tasks ultimately determines the total time for picking and binning all of the parts. The objectives of the algorithm framework are to minimise the total time for travelling as well as the total time idling, given the number of robots available to perform the picking and binning functions. The algorithm framework incorporates collision avoidance since the aisle width does not allow two robots to pass each other. The routing problem sets the foundation for solving the sequencing and allocation problem. The best heuristic from the routing problem is used as the strategy for routing the robots in the sequencing and allocation problem. The routing heuristics used to test the framework in this dissertation include the return heuristic, the s-shape heuristic, the midpoint heuristic and the largest gap heuristic. The metaheuristic solution strategies for single objective part sequencing and allocating problem include the covariance matrix adaptation evolution strategy (CMA-ES) algorithm, the genetic algorithm (GA), the guaranteed convergence particle swarm optimisation (GCPSO) algorithm, and the self-adaptive differential evolution algorithm with neighbourhood search (SaNSDE). The evolutionary multi-objective algorithms considered in this dissertation are the non-dominated sorting genetic algorithm III (NSGA-III), the multi-objective evolutionary algorithm based on decomposition (MOEAD), the multiple objective particle swarm optimisation (MOPSO), and the multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES). Solving the robot routing problem showed that the return routing heuristic outperformed the s-shape, largest gap and midpoint heuristics with a significant margin. The return heuristic was thus used for solving the routing of robots in the part sequencing and allocation problem. The framework was able to create feasible real-world solutions for the part sequencing and allocation problem. The results from the single objective problem showed that the CMA-ES algorithm outperformed the other metaheuristics on the part sequencing and allocation problem. The second best performing metaheuristic was the SaNSDE. The GA was the third best metaheuristic and the worst performing metaheuristic was the GCPSO. The multi-objective framework was able to produce feasible trade-off solutions and MOPSO was shown to be the best EMO algorithm to use for accuracy. If a large spread and number of Pareto solutions are the most important concern, MOEAD should be used. The research contributions include the incorporation of collision avoidance in the robot routing problem when using single and multi-objective algorithms as solution strategies. This dissertation contributes to the research relating to the performance of metaheuristics and evolutionary multi-objective algorithms on routing, sequencing, and allocation problems. To the best of the author’s knowledge, this dissertation is the first where these four metaheuristics and evolutionary multi-objective algorithms have been tested for solving the robot picking and binning problem, given that all collisions must be avoided. It is also the first time that this specific variation of the part sequencing and allocation problem has been solved using metaheuristics and evolutionary multi-objective algorithms, taking into account that all collisions must be avoided.