Doctoral Degrees (Institute for Wine Biotechnology)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Institute for Wine Biotechnology) by Author "Mehlomakulu, Ngwekazi Nwabisa"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemGenetic investigation and characterization of killer toxins secreted by non-Saccharomyces yeasts(Stellenbosch : Stellenbosch University, 2015-04) Mehlomakulu, Ngwekazi Nwabisa; Divol, Benoit; Setati, Mathabatha Evodia ; Stellenbosch University. Faculty of Agrisciences. Dept. of Viticulture and Oenology. Institute for Wine Biotechnology.ENGLISH ABSTRACT: In the current study, two isolates showing killer activity against several wine yeast species in a previous study were identified to strain level and found to belong to the yeast species Candida pyralidae. The identified yeast strains and a Kluyveromyces wickerhamii yeast strain used as a control exhibited killer activity against B. bruxellensis known for its spoilage characteristics in red wine, and against several strains of the genus Brettanomyces on white and red grape juice medium. The killer yeasts inhibited neither the growth of S. cerevisiae nor that of the lactic acid bacteria Oenococcus oeni and Lactobacillus plantarum strains. Yeasts are reported to secrete killer toxins, which can play a role in yeast microbial interactions under winemaking conditions. The C. pyralidae strains were found to secrete two novel killer toxins, designated CpKT1 and CpKT2. These killer toxins were stable and active under winemaking conditions, pH 3.5 - 4.5 and temperature ranges between 15 and 25°C. Ethanol and sugar concentrations found during winemaking did not affect the activity and stability of these killer toxins. Although, the killer toxins differed with regards to their biochemical and environmental stability and activity, they were found to have a similar mode of action. The killer toxins induced a fungistatic effect on B. bruxellensis sensitive cells in addition to binding to the cell wall of the sensitive cells, inducing cell surface and plasma membrane damage as did the Kwkt killer toxin secreted by K. wickerhamii. According to the author’s knowledge this is the first report on the identification of novel killer toxins secreted by C. pyralidae strains isolated from a wine environment as well as the identification of the mode of action of killer toxins on B. bruxellensis cells. This indeed provides great research scope in this field. The exoproteomes consisting of the killer toxins Kwkt, CpKT1 and CpKT2 revealed the presence of exo-glucanases and glucosidases, respectively. The enzymes KwExg1 (exoglucanase) and KwSun4 (glucosidase) retrieved from K. wickerhamii’s exoproteome were identified as the potential toxins, but their killer activity could not be confirmed. These findings suggest that hydrolytic enzymes possess killer activity, as previously reported in literature. However, further investigation is needed to identify the killer toxins characterized in this study.