Doctoral Degrees (Institute for Wine Biotechnology)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Institute for Wine Biotechnology) by Author "Franken, Jaco"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemCarnitine metabolism and biosynthesis in the yeast Saccharomyces cerevisiae(Stellenbosch : University of Stellenbosch, 2009-12) Franken, Jaco; Bauer, Florian; Strauss, Erick; University of Stellenbosch. Faculty of Agrisciences. Dept. of Viticulture and Oenology. Institute for Wine Biotechnology.ENGLISH ABSTRACT: Carnitine plays an essential role in eukaryotic metabolism by mediating the shuttling of activated acyl residues between intracellular compartments. This function of carnitine, referred to as the carnitine shuttle, is supported by the activities of carnitine acyltransferases and carnitine/acylcarnitine transporters, and is reasonably well studied and understood. While this function remains the only metabolically well established role of carnitine, several studies have been reporting beneficial effects associated with dietary carnitine supplementation, and some of those beneficial impacts appear not to be directly linked to shuttle activity. This study makes use of the yeast Saccharomyces cerevisiae as a cellular model system in order to study the impact of carnitine and of the carnitine shuttle on cellular physiology, and also investigates the eukaryotic carnitine biosynthesis pathway. The carnitine shuttle of S. cerevisiae relies on the activity of three carnitine acetyltransferases (CATs), namely Cat2p (located in the peroxisome and mitochondria), Yat1p (on the outer mitochondrial membrane) and Yat2p (in the cytosol), which catalyze the reversible transfer of activated acetyl units between CoA and carnitine. The acetylcarnitine moieties can be transferred across the intracellular membranes of the peroxisomes and mitochondria by the activity of the carnitine/acetylcarnitine translocases. The activated acetyl groups can be transferred back to free CoA-SH and further metabolised. In addition to the carnitine shuttle, yeast can also utilize the glyoxylate cycle for further metabolisation of in particular peroxisomally generated acetyl-CoA. This cycle results in the net production of succinate from two molecules of acetyl-CoA. This dicarboxylic acid can then enter the mitochondria for further metabolism. Partial disruption of the glyoxylate cycle, by deletion of the citrate synthase 2 (CIT2) gene, generates a yeast strain that is completely dependent on the activity of the carnitine shuttle and, as a consequence, on carnitine supplementation for growth on fatty acids and other non-fermentable carbon sources. In this study, we show that all three CATs are required for the function of the carnitine shuttle. Furthermore, overexpression of any of the three enzymes is unable to crosscomplement deletion of any one of the remaining two, suggesting a highly specific role for each CAT in the function of the shuttle. In addition, a role for carnitine that is independent of the carnitine shuttle is described. The data show that carnitine can influence the cellular response to oxidative stresses. Interestingly, carnitine supplementation has a protective effect against certain ROS generating oxidants, but detrimentally impacts cellular survival when combined with thiol modifying agents. Although carnitine is shown to behave like an antioxidant within a cellular context, the molecule is unable to scavenge free radicals. The protective and detrimental impacts are dependent on the general regulators of the cells protection against oxidative stress such as Yap1p and Skn7p. Furthermore, from the results of a microarray based screen, a role for the cytochrome c heme lyase (Cyc3p) in both the protective and detrimental effects of carnitine is described. The requirement of cytochrome c is suggestive of an involvement in apoptotic processes, a hypothesis that is supported by the analysis of the impact of carnitine on genome wide transcription levels. A separate aim of this project involved the cloning and expression in S. cerevisiae of the four genes encoding the enzymes from the eukaryotic carnitine biosynthesis pathway. The cloned genes, expressed from the constitutive PGK1 promoter, were sequentially integrated into the yeast genome, thereby reconstituting the pathway. The results of a plate based screen for carnitine production indicate that the engineered laboratory strains of S. cerevisiae are able to convert trimethyllysine to L-carnitine. This work forms the basis for a larger study that aims to generate carnitine producing industrial yeast strains, which could be used in commercial applications.