Doctoral Degrees (Chemical Engineering)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Chemical Engineering) by Author "Bosman, Catharine Elizabeth"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemA thermosiphon photobioreactor for photofermentative hydrogen production by Rhodopseudomonas palustris.(Stellenbosch : Stellenbosch University, 2023-03) Bosman, Catharine Elizabeth; Pott, Robert William M.; Bradshaw, Steven Martin; Stellenbosch University. Faculty of Engineering. Dept. of Process Engineering.ENGLISH ABSTRACT: Hydrogen has widely been identified as a commodity chemical. Currently, however, hydrogen is primarily produced through non-renewable methods. Biological hydrogen production through microbial photofermentation offers an environmentally friendly and potentially economically feasible alternative. Although this technology is promising, the costs associated with photofermentation systems need to be reduced and hydrogen productivity increased, to make the technology a competitive alternative to non-renewable hydrogen production methods. This can potentially be realised through cost-reduction strategies in combination with bioremediation – purifying wastewater whilst simultaneously producing a valuable chemical. This work applied a combination of techniques to develop and evaluate a novel thermosiphon photobioreactor (TPBR) for photofermentative hydrogen production, using Rhodopseudomonas palustris (R. palustris). The TPBR implements the thermosiphon effect to passively circulate biomass – the first and currently the only photobioreactor with the potential of operating without any external energy inputs. The TPBR was successfully implemented for photofermentative hydrogen production using R. palustris, achieving maximum hydrogen production rates of up to 0.310 mol·m−3 ·h−1 in the growing state. The effects of light intensity, temperature and biomass concentration on hydrogen production and passive circulation of biomass were investigated. The effects of biomass concentration were found to be most pronounced (0.4 to 1.2 g·L−1 ), while light intensities of 400 to 600 W·m−2 and an internal operating temperature of 31 to 44 °C were found to be suitable for hydrogen production. Exploring the effects of geometry, two novel TPBR designs were proposed – a tubular loop TPBR and a flat-plate TPBR. Using computational fluid dynamics (CFD) simulations, these designs were characterized in terms of fluid flow patterns, temperature profiles and radiation fields. Both TPBR designs showed potential for hydrogen production, achieving temperature gradients sufficient to ensure adequate circulation and velocities to maintain biomass in suspension. CFD simulations indicated light distribution as a possible area for improvement in the existing TPBR. Consequently, a reflector system was developed and implemented for the enhancement of light distribution and hydrogen production in the experimental TPBR – achieving a more uniform light field and an associated 48% increase in hydrogen production. Evaluating the feasibility of outdoor operation, the effects of diurnal light cycles and the emission spectrum of light were investigated. R. palustris was able to produce hydrogen under a sunlight-mimicking light emission spectrum achieving maximum hydrogen production rates of 0.790 mol·m−3 ·h−1 , albeit slightly lower as compared to under near-infrared light where it reached production rates up to 0.891 mol·m−3 ·h−1 . Hydrogen production was found to cease during dark periods in the diurnal light cycles; however, continuing again in the presence of light and achieving maximum Stellenbosch University https://scholar.sun.ac.za iii hydrogen production rates of ~0.015 mol·m−3 ·h−1 . This demonstrated promising potential towards outdoor operation of the TPBR, circumventing the requirement for external energy inputs. This dissertation has successfully demonstrated the application of a novel thermosiphon photobioreactor for photofermentative hydrogen production with minimal external energy input. The research comprised determination of suitable operating conditions for hydrogen production, a CFD modelling method for the design of PBRs, two novel TPBR designs and characterization thereof, a light distribution strategy for the enhancement of hydrogen productivity in PBRs, and insight into the passive circulation of biomass in a TPBR and the behaviour of R. palustris under simulated outdoor conditions. Collectively, this research provides knowledge not only improving the TPBR, but which could also be extended to other systems in the biohydrogen field.