Department of Soil Science
Permanent URI for this community
Browse
Browsing Department of Soil Science by Author "Botha, Ockert Guillaume"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemThe effect of composted biochar on compost properties and mineralisation(Stellenbosch : Stellenbosch University, 2016-12) Botha, Ockert Guillaume; Hardie-Pieters, Ailsa G.; Rozanov, Andrei Borisovich; Stellenbosch University. Faculty of AgriSciences. Dept. of Soil Science.ENGLISH ABSTRACT: Pyrolized carbon, also known as biochar, is a widely used soil conditioner recognized for its adsorption, C sequestration and agricultural qualities. This led to the investigation into the possible use thereof by small-scale sustainable farmers as a filter for agricultural olive or wine effluent, where after the spent biochar can be incorporated into composts to sterilize it from toxins and pathogens before being used as soil amendment. However, before these used biochar filters can be applied to compost, research is required to assess the affect that biochar could have on the composting process. This research project was therefore initiated to investigate the feasibility of adding biochar to composts, specifically focusing on the effect of type and amount of biochar on the composting process and mineralisation of the composts in soils. The final aim was to construct a method for quantifying biochar content in compost and soil that can be used to assess the stability of biochar in soils. Furthermore, none of this research has previously been done in South Africa or on two locally produced biochars. The first experiment was constructed to evaluate the effect of two contrasting commercial biochars on composting; a relatively low-cost, crude, pine wood biochar produced using a low-tech slow pyrolysis technique at 450°C, and a significantly more expensive, refined eucalyptus biochar produced using a high-tech slow pyrolysis technique at 900°C. The biochars were applied at two application rates (10% and 20% dry weight) to a mixture of green and animal waste. The effect was measured through composting indices such as temperature, C/N ratio, pH and EC, and microbial activity. Results showed that the robust, low temperature pine biochar applied at 10% (d/w) is the most suitable for composting due to higher composting temperatures measured, lower C/N ratios in the final product and higher cumulative microbial activity relative to the other biochar treatments. However, all biochar and control composts were all classified as successfully matured and stabilized according to the indices used, indicating that both types of biochar and application rates can be used to produce compost. The second experiment was aimed at comparing the carbon (C), nitrogen (N) and phosphorus (P) mineralisation of the composted biochar in relation to compost with biochar and biochar only under ideal laboratory conditions. The incorporation of these treatments into the soil showed that the composting process increased the composted biochars degradability with 7.6 – 11.7% more carbon dioxide (CO2) being respired than compost with biochar of the same quantity. Biochar type and quantity influenced the mineralisation as eucalyptus char in general, and all treatments containing 20% biochar proved to be least degradable by microbes. Nitrogen mineralisation results showed that regardless of biochar type, quantity or composting, all biochar containing treatments caused net N immobilization and reduced nitrification. Phosphorus availability was found to be improved for both biochars through composting and the addition of compost, especially for eucalyptus biochar of which the amount of available P surpassed that of pine biochar although pine biochar only applications released more P. A 6-month field trial experiment was also constructed to further evaluate the five composts’ C mineralisation under natural conditions. In this experiment there was found that all biochar containing compost produced 7.6 – 20.1% less CO2 than the control compost, of which eucalyptus biochar showed the least amount of respiration. Loss on ignition results also revealed that composted eucalyptus biochar was the least degradable composts as only 7.4% and 7.8% of the total SOM was lost. Density fractionation further illustrated that composted biochar remains in the soil in particulate form longer than conventional compost and is slower to transform into the mineral fraction. No discernable difference in biochar content within the composts could be seen after field application at 50 t/ha. The final aim of developing a rapid and cost-effective quantification method with the use of near-infrared spectroscopy (NIRS), was completed by constructing a calibration range of soils and compost from both types of biochar. The spectra acquired was then used to create regression models that were used to predict biochar content in the final mature composts and field trial soils. The results showed that NIRS can be used to quantify biochar, to within the same order of magnitude, in both composts and soil mixtures, which is of great importance for C stock audits and assessing biochar decay over time. Selecting the type of biochar for water filtration, composting and soil conditioning, would be dependent on the purpose of the application. Both biochars show the ability to be successfully composted and used as soil amendment with good C sequestration capabilities. However, pine biochar is more suitable for the composting process and sterilization as it results in higher temperatures and increased microbial activity. Eucalyptus biochar however, would be the best option for phosphorus mineralisation and building soil carbon stocks.