Masters Degrees (Botany and Zoology)
Permanent URI for this collection
Browse
Browsing Masters Degrees (Botany and Zoology) by Author "Archer, Edward"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemAndrogen controlled secondary sexual characters in the male African clawed frog, Xenopus laevis, as potential biomarkers for endocrine disruptor contaminants (with special reference to fungicides) in aquatic systems(Stellenbosch : Stellenbosch University, 2014-04) Archer, Edward; van Wyk, Johannes, Hendrik; Stellenbosch University. Faculty of Science. Dept. of Botany and Zoology.ENGLISH ABSTRACT: Endocrine disrupting contaminants (EDCs) coming from households, industrial parks, wastewater (sewage) treatment and agricultural areas have been shown to pollute our freshwater systems. These contaminants may disrupt early development and reproductive systems in freshwater organisms (fish, frogs and crocodile species) as well as humans. Agricultural pesticides are shown as a large contributor to endocrine disruption activity in water catchment areas through spray drift, runoff, and/or groundwater leeching. Although South Africa is recognized as the largest consumer of agricultural pesticides in Africa, few studies have been undertaken to assess the prevalence and impact of endocrine disorders activities of pesticides in local freshwater systems. Recent studies have suggested that various agricultural pesticides, especially fungicides, might have adverse effects on the male endocrine system. There is therefore a need to test for a wider range of endocrine disrupting activities (mechanisms) in environmental waters other than conventional estrogenic (feminising) activities. Furthermore, there is a need to establish biomarkers in endemic species (bio-indicators) to show endocrine disruption in vertebrates (therefore also apply to humans). The specific objectives of the study were to: (1) describe and confirm the use of androgen-controlled breeding glands in male African clawed frogs (Xenopus laevis) as a biomarker for (anti)androgenic endocrine disruption activity (Chapter 2), (2) to investigate the premature development of breeding glands in X. laevis tadpoles (pre-metamorphic) and young froglets (post-metamorphic) (Chapter 2), (3) to investigate the disruption of male reproductive traits in adult X. laevis frogs by exposure to substances disrupting two different anti-androgenic endocrine disruption pathways (Chapter 3), (4) screen for (anti)androgenic activity of individual and binary mixtures of pesticides, which are regularly used in agricultural areas in the Western Cape Province of South Africa (Chapter 4), and (5) to test for (anti)androgenic and estrogenic endocrine disrupting activities by making use of in vitro assays as well as adult male X. laevis frogs collected from selected ponds surrounded by vineyards and fruit orchards in the Stellenbosch Winelands. The present study confirmed that male breeding glands can serve as biomarkers for (anti)androgenic endocrine disruption and that male reproductive and secondary sexual characteristics can be disrupted through two different biochemical control pathways. The study also confirmed that the expression of androgen-regulated breeding glands can be stimulated in pre-metamorphic tadpoles and immature, post-metamorphic frogs, and can thus be used for (anti)androgenic testing. The rapid testing and predictive value of an in vitro recombinant yeast screen for androgen receptor binding inhibition of selected individual or binary mixtures of pesticides was also confirmed. However, the current study showed that the predicted in vitro (anti)androgenic activity did not always correspond with in vivo (anti)androgenic biomarker outcomes. This It also confirmed that single-cell in vitro assays can be used as a first-level prediction for (anti)androgenic activities of individual or mixtures of agricultural pesticides. This study provides a better understanding for potential mixture interactions of commonly used agricultural pesticides, the hormonal control of secondary sexual characteristics in male frogs and the use of reproduction biomarkers to study long-term effects of endocrine disruptors in local water supplies.