Doctoral Degrees (Civil Engineering)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Civil Engineering) by Author "Babafemi, Adewumi John"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemTensile creep of cracked macro synthetic fibre reinforced concrete(Stellenbosch : Stellenbosch University, 2015-03) Babafemi, Adewumi John; Boshoff, William Peter; Stellenbosch University. Faculty of Engineering. Dept. of Civil Engineering.ENGLISH ABSTRACT: Macro synthetic fibres are known to significantly improve the toughness and energy absorption capacity of conventional concrete in the short term. However, since macro synthetic fibre are flexible and have relatively low modulus of elastic compared to steel fibres, it is uncertain if the improved toughness and energy absorption could be sustained over a long time, particularly under sustained tensile loadings. The main goal of this study is to investigate the time-dependent crack mouth opening response of macro synthetic fibre reinforced concrete (FRC) under sustained uniaxial tensile loadings, and to simulate the flexural creep behaviour. For the purpose of simulating the in-service time-dependent condition, all specimens were pre-cracked. Experimental investigations were carried out at three levels (macro, single fibre and structural) to investigate the time-dependent behaviour and the mechanisms causing it. At the macro level, compressive strength, uniaxial tensile strength and uniaxial tensile creep test at 30 % to 70 % stress levels of the average residual tensile strength were performed. To understand the mechanism causing the time-dependent response, fibre tensile test, single fibre pullout rate test, time-dependent fibre pullout test and fibre creep test were done. Flexural test and flexural creep test were done to simulate the structural level performance. The results of this investigation have shown significant drop in stress and increase in crack width of uniaxial tensile specimens after the first crack. The post cracking response has shown significant toughness and energy absorption capacity. Under sustained load at different stress levels, significant crack opening has been recorded for a period of 8 month even at a low stress level of 30 %. Creep fracture of specimens occurred at 60 % and 70 % indicating that these stress levels are not sustainable for cracked macro synthetic FRC. The single fibre level investigations have revealed two mechanisms responsible for the time-dependent crack widening of cracked macro synthetic FRC under sustained loading: time-dependent fibre pullout and fibre creep. In all cases of investigation, fibre failure was by complete pullout without rupture. Flexural creep results have shown that the crack opening increases over time. After 8 months of investigation, the total crack opening was 0.2 mm and 0.5 mm at 30 % and 50 % stress levels respectively. Since the crack opening of tensile creep and flexural creep specimens cannot be compared due to differences in geometry, specimen size, load transfer mechanisms and stress distribution in the cracked plane, a finite element analysis (FEA) was conducted. Material model parameters obtained from the uniaxial tensile test and viscoelastic parameters from curve fitting to experimental uniaxial creep results have been implemented to successfully predict the time-dependent crack opening of specimens subjected to sustained flexural loading. Analyses results correspond well with experimental result at both 30 % and 50 % stress levels.