Doctoral Degrees (Conservation Ecology and Entomology)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Conservation Ecology and Entomology) by browse.metadata.advisor "Chown, S. L."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemSpatial patterns in the microarthropod community associated with Azorella selago (Apiaceae) on the sub-Antarctic Prince Edward Islands(Stellenbosch : Stellenbosch University, 2006-12) Hugo, Elizabeth Aletta; McGeoch, M. A.; Chown, S. L.; Stellenbosch University. Faculty of Agrisciences. Dept. of Conservation Ecology and Entomology.ENGLISH ABSTRACT: The spatial distribution of animals and plants at different scales is a central theme in ecology. Knowledge of biodiversity distribution is essential, especially with the current threat of climate change and invasion by alien species. Since the impact of climate change and alien species will be, and has already been pronounced in polar regions, information on the current spatial distributions of biota in these regions is critical to predict the consequences of climate change and alien species on the future survival, distribution and abundance of indigenous biota. This study was conducted on the sub- Antarctic Prince Edward Islands (consisting of Marion Island and Prince Edward Island), which have experienced rapid climate changes over the past 50 years. Additionally, a number of alien plant, vertebrate and invertebrate (also microarthropod) species have been introduced to these islands. Since microarthropods (mites and springtails) play an essential role in decomposition and mineralization of plant material on the islands, the loss of microarthropods from decomposer communities might have disastrous results for ecosystem processes. Therefore it is essential to know the current distributions of microarthropods in order to predict future distributions patterns in reaction to climate change and invasive species. In this study, the spatial distribution of mites and springtails inhabiting the cushion plant Azorella selago Hook, were examined at different scales of observation. Firstly, the microarthropod community was examined at a fine scale. The relationship between microarthropod species richness and abundance and plant size, isolation, within-plant variability, grass cover and microclimate variables were investigated. Thereafter, the spatial variability of microarthropod abundances was examined within stands of plants, with statistical methods using varying degrees of locational information to determine if microarthropod abundance is random, regular or aggregated at this scale. Further, the spatial variability of microarthropod communities in A. selago at different altitudes and on different sides of Marion Island, i.e. island-wide scale, was examined. The last scale of observation was the island-wide scale, in which microarthropod assemblages were compared between Marion Island and Prince Edward Island, as well as in different plant species. Microarthropods showed spatial heterogeneity within A. selago plants (higher abundances in eastern and southern sides of plants), island-wide (lower springtail abundance on the eastern side of the island and at high altitudes) and between islands (more alien species on Marion Island). In contrast, microarthropod abundance was not spatially heterogeneous within a stand of plants, i.e. mostly randomly distributed. The possible mechanisms responsible for these patterns differ between scales, and range from temperature and nutrient availability at the within plant and island wide scale to alien species between islands. Climate change is likely to alter these distribution patterns of microarthropods, either directly (unfavourable climate for indigenous species growth, development and dispersal) or indirectly (favouring alien microarthropod species; increase in grass cover on A. selago plants may alter community structure). The information presented here, is essential for predicting the possible impacts of climate change on microarthropods in fellfield ecosystems on sub-Antarctic islands.