Masters Degrees (Forest and Wood Science)
Permanent URI for this collection
Browse
Browsing Masters Degrees (Forest and Wood Science) by browse.metadata.advisor "Botha, Alfred"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemFungal pretreatment of unextracted and pressurized hot water extracted Eucalyptus Grandis wood chips(Stellenbosch : Stellenbosch University, 2007-12) Dyantyi, S. D. (Simphiwe David); Gerischer, G. R. F.; Botha, Alfred; Stellenbosch University. Faculty of Agrisciences. Dept. of Forest and Wood Science.ENGLISH ABSTRACT: Unextracted (control) and PHWe Eucalyptus grandis wood chips were pulped at 15% active alkali (AA) and 1% antraquinone (AQ). Another batch of wood chips were then inoculated with fungal co-cultures of Aspergillus flavipes and Pycnoporus sanguineus. FCCi wood chips were incubated for four weeks; one PHWe inoculated experimental treatment was incubated for three weeks. The full pulping cycle (160 min) was used to digest the experimental treatments with the exception of one lot of PHWe wood chips that were pulped for 150 minutes. A further experimental treatment of PHWe wood chips was cooked at a reduced AA charge of 14% and 1% AQ. Analysis of variance (ANOVA) of the data from all the experimental treatments was conducted and the differences within the experimental treatments were determined using Statistica (v7, 1984–2006). The F-value (Fischer distribution) and the p-value as well as a non-parametric test known as the Mann-Whitney procedure was tested at the 95% confidence limit. For a further enhancement of the 95% confidence limit the screened yield data was tested by the Bootstrap method. Scanning electron micrographs clearly demonstrated the changed structure and appearance of the chip cross-sectional area after the different pretreatments. Although the mean average results of all the screened pulp yields showed no significant statistical difference (p> 0.05), differences in screened yield of up to 2.5% were obtained. All the weighted means of the rejects showed a significant difference (p < 0.05). Other pulp properties like shive content, chemical consumption, Kappa number, handsheet brightness and strength tests showed mixed results i.e. rejected or accepted the hypothesis (p> or =or < 0.05). The hypothesis that the combined PHWE and FCCI of wood chips would further increase the pulp yield had to be rejected. It is however anticipated that the combination of PHWE with successive co-culture fungal pretreatment would be very beneficial in obtaining higher pulp yields for fully bleached chemical pulp. Further research would be required to test this assumption. This investigation confirmed the expected beneficial effects of combined PHWE and FCCI pretreatments of wood chips on the strength properties. In addition the combined treatment also improved the initial bonding strength potential of the unbeaten fibres.
- ItemImproved filler retention by co-flocculation of fines and filler particles.(Stellenbosch : Stellenbosch University, 2005-04) Matyumza, Ntombozuko C.; Gerischer, G. F. R.; Rypstra, T.; Botha, Alfred; Stellenbosch University. Faculty of AgriSciences. Dept. of Forest and Wood Science.ENGLISH ABSTRACT: The retention of filler particles and drainage are important aspects of papermaking. A number of important paper properties depend in the quality and quantity of filler retained in the paper. Fines, fillers and pulp fibres all have a negative charge and are kept apart by electrostatic forces. This causes a decrease in the effectiveness of cationic retention aids thereby causing a high cationic demand. This in turn implies that the retention of fines and filler particles in a formed sheet is not efficient, especially in the presence of anionic trash. In order to improve printability, print quality and dimensional stability, a large percentage of mineral pigments / fillers either in the form of internal loading or external coating should be added. It was found that coflocculation of fines and filler particles resulted in an even distribution of filler particles in the form of miero-flocs and the filler retention was maintained. Opacity was improved without much reduction in paper strength. An increased filler content without coflocculation of fines reduced sheet strength properties. The filler particles interfered with the development of fibre-to-fibre bonds and occupied spaces that otherwise might have contained fibres. This study showed that the most beneficial effect of coflocculation of filler with fines was obtained, with regards to paper strength, opacity, filler retention and printability, when the charge of the fibre furnish was maintained at -0.1 leu with the 0.1% addition of cationic PAM retention aid.