Doctoral Degrees (Earth Sciences)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Earth Sciences) by browse.metadata.advisor "Clarke, Catherine E."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemThe effect of winery wastewater irrigation on the properties of selected soils from the South African wine region(Stellenbosch : Stellenbosch University, 2016-12) Mulidzi, Azwimbavhi Reckson; Clarke, Catherine E.; Myburgh, P. A.; Roychoudhury, A. V.; Stellenbosch University. Faculty of Science. Dept. of Earth Sciences.ENGLISH ABSTRACT: Due to an increase in wine production as well as an intensification of environmental legislation in South Africa, the need for guidelines for sustainable management of winery wastewater has increased. To address this, the first part of the study focused on the seasonal dynamics of the volumes and quality of undiluted winery wastewater. The soil chemical dynamics were monitored in two different soils that were irrigated with undiluted winery wastewater for three years. Over-irrigation with undiluted winery wastewater in combination with winter rainfall caused large amounts of cations, particularly K+ and Na+, to leach beyond 90 cm soil depth. Consequently, the leached elements are bound to end up in natural water resources over time. Irrigation with undiluted winery wastewater did not have a pronounced effect on soil pH(KCl). This was probably due to the decomposition of organic matter and the fact that the applied salts as well as dissolved organic or mineral acids leached beyond 90 cm depth. The practical application of irrigation with diluted winery wastewater was assessed in a pot experiment. Irrigations were applied under a rain shelter over four simulated irrigation seasons. Four soils varying in texture were irrigated with winery wastewater that was diluted to 3000 mg/L chemical oxygen demand (COD). The four soils were irrigated with municipal water as a control. The rate of K+ increase in the soil containing 20% clay was higher than in soils containing 13% clay, or less. This suggested that heavy soils will aggravate the risk of high K+ levels. The risk of Na+ accumulation increased linearly with the clay content in the soil. Low Ca2+ and Mg2+ concentrations in the diluted wastewater had no effect on the soil, irrespective of clay content. Irrigation with diluted winery wastewater increased soil pH(KCl) substantially in all soils over four simulated seasons. The soil pH increase was attributed to the addition of organic and mineral salts via the diluted winery wastewater to the soil. The effect of simulated rainfall on soils irrigated with winery wastewater was also assessed in a pot experiment. Six soils with different clay content were irrigated with winery wastewater diluted to 3000 mg/L over one simulated irrigation season. Thereafter, good quality river water simulating winter rainfall was added to the pots. The rainfall was simulated according to the long term averages of the regions were the soils originated. Leaching of cations, particularly K+ and Na+ occurred only from four of the six soils when winter rainfall was simulated. In one of the sandy soils, the simulated rainfall was too low to allow leaching. In the case of other soil where there was no leaching, high clay content of 35% in combination with low rainfall prevented leaching. Where three soils received the same amount of rainfall, more cations leached from the sandy soils compared to the two heavier soils. These trends indicated that leaching of cations was a function of soil texture and rainfall.
- ItemIsotopic and elemental ratios to assess the relationship between heuweltjies and saline groundwater in the Northern Cape of South Africa.(Stellenbosch : Stellenbosch University, 2021-12) Van Gend, Jani; Miller, Jodie A.; Clarke, Catherine E.; Francis, Michele Louise; Stellenbosch University. Faculty of Science. Dept. of Earth Sciences.ENGLISH ABSTRACT: Globally, groundwater is becoming one of the most important resources. This is specifically the case in semi-arid to arid southern Africa where surface water resources are limited. In the Buffels River catchment, part of a coastal desert and global diversity hotspot in Namaqualand, South Africa, many communities and the local economy are largely dependent on groundwater as the only source of potable water in the region. However, the groundwater is variably saline. In this study, hydrochemistry and stable and radiogenic isotopes from groundwater in the Buffels River catchment is used to determine the origin of salts in the groundwater as well as the mechanism of salinisation. In order to do this, a better understanding of the aquifer systems was required. Basic cation and anion data together with δ¹⁸O, δ²H and ⁸⁷Sr/⁸⁶Sr data indicated that evaporative concentration of salts is not the main contributor to salinisation as previously thought, but that dry deposition of marine aerosols and water-rock interaction are the main sources of salts. Heuweltjies are prominent features in this region and it was known that they generally consist of nutrient rich soils, but geophysics data revealed that these soils are extremely saline with the salinity increasing with depth and towards the centre of the heuweltjie. Thus, heuweltjies are zones where salts accumulate and given that heuweltjies consist of aerated soils and contain tunnels which could act as preferential flow paths, their contribution to salinisation was further investigated. A new groundwater recharge model for was conceptualised which include recharge through heuweltjies, and total mean groundwater ages were calculated using a combination of ¹⁴C and ³H and a lumped parameter approach to understand when recharge has been taking place. The age of groundwater in the Buffels River catchment range between modern and ~18 000 years, with modern fraction of up to 80 %. The relationship between heuweltjie salts and saline groundwater was further investigated by determining the relative depths and ages of the different carbonate horizons. Heuweltjies are up to ~30 000 years old and three distinct wetting fronts, which is an indication of mean annual rainfall amounts, are seen. This proved that heuweltjies act as preferential flow paths and that salts are transported downwards through the centre of the heuweltjies. δ¹⁸O SO4 and δ S SO4 isotope signatures of heuweltjie soils indicated that the salts in 2- 34 2- heuweltjies is directly related to dry deposition of aerosols containing both marine and non-marine- salts. δ¹⁸O SO4 signatures of groundwater hosted in the granitic gneisses are similar to that of the 2- heuweltjies, suggesting that the mechanism of formation of these salts are the same, while the δ34S 2- SO4 signature indicate a “granitic gneiss”-influence. In contrast to this. In areas were the heuweltjie density is high, the δ³⁴S SO4 and δ O SO4 signatures of groundwater and heuweltjie soils are 2- 18 2- comparable indicating that salts stored in heuweltjies are flushed into the aquifer system and that heuweltjies play a role in salinisation of groundwater and have been doing so for thousands of years.