Doctoral Degrees (Molecular Biology and Human Genetics)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Molecular Biology and Human Genetics) by browse.metadata.advisor "De Souza, Gustavo A."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemThe evolution of the Mycobacterium tuberculosis proteome in response to the development of drug resistance(Stellenbosch : Stellenbosch University, 2013-03) Fortuin, Suereta; Warren, Robin M.; Gey van Pittius, Nicolaas C.; Wiker, Haraald G.; De Souza, Gustavo A.; Stellenbosch University. Faculty of Medicine and Health Sciences. Dept. of Biomedical Sciences. Division of Molecular Biology and Human Genetics.ENGLISH ABSTRACT: This study is the first of its kind to highlight the importance of using the latest state of the art technology available in the field of proteomics as a complementary tool to characterize the proteome of members of the Mycobacterium tuberculosis Beijing lineage which have been linked to outbreaks and drug resistance of Tuberculosis (TB). Our label-free comparative analysis of two closely related M. tuberculosis strains with different transmission patterns and levels of virulence highlighted numerous factors that may alter metabolic pathways leading to hyper-virulence whereby the strain was able to rapidly replicate in the host and cause extensive disease. This comparative analysis clearly demonstrated that both instrumentation and analysis software impacts on the number of proteins identified and thereby the interpretation of the proteomic data. These proteomes also served as substrates for the discovery of phosphorylation sites, a field of research that reflects a significant knowledge gap in the field of M. tuberculosis. By using differential separation techniques in combination with the state of the art mass spectrometry we described the phosphorylation sites on 286 proteins. This was the first study to document phosphorylation of tyrosine residues in M. tuberculosis. By this means, our data set further extend and complement previous knowledge regarding phosphorylated peptides and phosphorylation sites in M. tuberculosis. Using advanced mass spectrometry methods we further investigated the impact of the in vivo evolution of rifampicin resistance on the proteome of a rifampicin-resistant strain containing a S531L rpoB mutation. We identified the presence of overabundant proteins which could provide novel insight into potential compensatory mechanisms that the bacillus uses to reduce susceptibility to anti-TB drugs. Our findings suggest that proteins involved in a stress response may relate to an altered physiology enabling the pathogen to tolerate and persist when exposed to anti-TB drugs. Together this suggests that structural changes in the RNA polymerase precipitated a cascade of events leading to alterations of metabolic pathways. In addition, we present the first comprehensive analysis of the effect of rifampicin on the proteome of a rifampicin resistant M. tuberculosis isolate suggesting that rifampicin continues to influence the biology of M. tuberculosis despite the presence of an rpoB mutation. Our analysis showed alterations in the cell envelope composition and allowing the bacterium to survive in a metabolically dormant/persistent growth state. The results presented in this study illustrate the full potential of using a proteomic approach as a complementary molecular technique to select promising candidate molecules and genes for further characterization using the tools of molecular biology.