Doctoral Degrees (Applied Mathematics)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Applied Mathematics) by browse.metadata.advisor "Coetzer, Johannes"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemDental implant recognition(Stellenbosch : Stellenbosch University, 2023-09) Kohlakala, Aviwe; Coetzer, Johannes; Stellenbosch University. Faculty of Science. Dept. of Mathematical Sciences. Applied Mathematics Division.ENGLISH ABSTRACT: Deep learning-based frameworks have recently been steadily outperforming existing state-of-the-art systems in a number of computer vision applications, but these models require a large number of training samples in order to effectively train the model parameters. Within the medical field the limited availability of training data is one of the main challenges faced when using deep learning to create practical clinical applications in medical imaging. In this dissertation a novel algorithm for generating artificial training samples from triangulated three-dimensional (3D) surface models within the context of dental implant recognition is proposed. The proposed algorithm is based on the calculation of two-dimensional (2D) parallel projections from a number of different angles of 3D volumetric representations of computer-aided design (CAD) surface models. A fully convolutional network (FCN) is subsequently trained on the artificially generated X-ray images for the purpose of automatically identifying the connection type associated with a specific dental implant in an actual X-ray image. An ensemble of image processing and deep learning-based techniques capable of distinguishing between pixels that belong to an implant from those belonging to the background in an actual X-ray image is developed. Normalisation and preprocessing techniques are subsequently applied to the segmented dental implants within the questioned actual X-ray image. The normalised dental implants are presented to the trained FCN for classification purposes. Experiments are conducted on two data sets that contain the simulated and actual X-ray images in order to gauge the proficiency of the proposed systems. Given the fact that the novel systems proposed in this study utilise an ensemble of techniques that has not been employed for the purpose of dental implant classification/recognition on any previous occasion, the results achieved in this study are encouraging and constitute a significant contribution to the current state of the art, especially in scenarios where the proposed systems are combined with existing systems.
- ItemHand vein-based biometric authentication using neural networks(Stellenbosch : Stellenbosch University, 2024-03) Beukes, Emile; Coetzer, Johannes; Stellenbosch University. Faculty of Science. Dept. of Applied Mathematics.ENGLISH ABSTRACT: The feasibility of employing convolutional neural networks for the purpose of authenticating an individual based on a near infra-red image of his/her dorsal hand vein pattern is inves- tigated in this study. The proficiency of different architectural designs associated with sim- ilarity measure networks (SMNs), in particular two-channel SMNs and Siamese SMNs, are compared. Four different combinations of neural network layers are investigated for each of the aforementioned SMNs. Three different levels of preprocessing are applied to the hand vein images in order to investigate the relevance of information surrounding the actual hand veins on the proficiency of the networks. The proficiency of the proposed systems is gauged within the context of two real-world scenarios, namely the individual dependent scenario (IDS) and the individual independent scenario (IIS). A tailor-made network is trained for each client during enrolment in mere minutes within the context of the IDS, while a single net- work is trained in a once-off fashion prior to the enrolment of any clients within the context of the IIS. Two publicly available hand vein databases namely the Bosphorus and Wilches databases are investigated within the context of this study. An artificially generated hand vein database, namely the GenVeins database, is developed in this study for the purpose of acquiring a set of training individuals that is large enough so as to be representative of the entire population. The motivation behind the creation of the GenVeins database constitutes the fact that experimental results indicate that system proficiency is severely impaired when training on an insufficient number of different individuals within the context of the IIS. The systems proposed in this study are therefore considered implementation-ready in the sense that they are either trained in a (1) tailor-made fashion for each client enrolled into the sys- tem in real time or in a (2) once-off fashion on a set of fictitious individuals that is sufficiently representative of the entire population. The proposed systems do therefore not merely serve as so-called proofs-of-concept (POCs) in which a system is trained and tested on the same set of individuals. These POCs are clearly not feasible within the context of any real world scenario.
- ItemWriter-independent handwritten signature verification(Stellenbosch : Stellenbosch University, 2015-12) Swanepoel, Jacques Philip; Coetzer, Johannes; Stellenbosch University. Faculty of Science. Department of Mathematical Sciences (Applied Mathematics).AFRIKAANSE OPSOMMING : In hierdie verhandeling stel ons 'n nuwe strategie vir outomatiese handtekening-verifikasie voor. Die voorgestelde raamwerk gebruik 'n skrywer-onafhanklike benadering tot handtekening- modellering en is dus in staat om bevraagtekende handtekeninge, wat aan enige skrywer behoort, te bekragtig, op voorwaarde dat minstens een outentieke voorbeeld vir vergelykingsdoeleindes beskikbaar is. Ons ondersoek die tradisionele statiese geval (waarin 'n bestaande pen-op-papier handtekening vanuit 'n versyferde dokument onttrek word), asook die toenemend gewilde dinamiese geval (waarin handtekeningdata outomaties tydens ondertekening m.b.v. gespesialiseerde elektroniese hardeware bekom word). Die statiese kenmerk-onttrekkingstegniek behels die berekening van verskeie diskrete Radontransform (DRT) projeksies, terwyl dinamiese handtekeninge deur verskeie ruimtelike en temporele funksie-kenmerke in die kenmerkruimte voorgestel word. Ten einde skryweronafhanklike handtekening-ontleding te bewerkstellig, word hierdie kenmerkstelle na 'n verskil-gebaseerde voorstelling d.m.v. 'n geskikte digotomie-transformasie omgeskakel. Die klassikasietegnieke, wat vir handtekeking-modellering en -verifikasie gebruik word, sluit kwadratiese diskriminant-analise (KDA) en steunvektormasjiene (SVMe) in. Die hoofbydraes van hierdie studie sluit twee nuwe tegnieke, wat op die bou van 'n robuuste skrywer-onafhanklike handtekeningmodel gerig is, in. Die eerste, 'n dinamiese tydsverbuiging digotomie-transformasie vir statiese handtekening-voorstelling, is in staat om vir redelike intra-klas variasie te kompenseer, deur die DRT-projeksies voor vergelyking nie-lineêr te belyn. Die tweede, 'n skrywer-spesieke verskil-normaliseringstrategie, is in staat om inter-klas skeibaarheid in die verskilruimte te verbeter deur slegs streng relevante statistieke tydens die normalisering van verskil-vektore te beskou. Die normaliseringstrategie is generies van aard in die sin dat dit ewe veel van toepassing op beide statiese en dinamiese handtekening-modelkonstruksie is. Die stelsels wat in hierdie studie ontwikkel is, is spesi ek op die opsporing van hoë-kwaliteit vervalsings gerig. Stelselvaardigheid-afskatting word met behulp van 'n omvattende eksperimentele protokol bewerkstellig. Verskeie groot handtekening-datastelle is oorweeg. In beide die statiese en dinamiese gevalle vaar die voorgestelde SVM-gebaseerde stelsel beter as die voorgestelde KDA-gebaseerde stelsel. Ons toon ook aan dat die stelsels wat in hierdie studie ontwikkel is, die meeste bestaande stelsels wat op dieselfde datastelle ge evalueer is, oortref. Dit is selfs meer belangrik om daarop te let dat, wanneer hierdie stelsels met bestaande tegnieke in die literatuur vergelyk word, ons aantoon dat die gebruik van die nuwe tegnieke, soos in hierdie studie voorgestel, konsekwent tot 'n statisties beduidende verbetering in stelselvaardigheid lei.