Department of Physics
Permanent URI for this community
Browse
Browsing Department of Physics by browse.metadata.advisor "Boonzaaier, Leandro"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemCave front tracking experiment(Stellenbosch : Stellenbosch University, 2016-12) Green, Mark; Muller-Nedebock, Kristian; Boonzaaier, Leandro; Lynch, Richard; Stellenbosch University. Faculty of Science. Department of PhysicsENGLISH ABSTRACT : Seismic tomography, a procedure to trace seismic wave velocity variation, has been used for more than 100 years to “see through rock”. Initially the recording of seismic waves from natural sources (earthquakes) using seismographs, provided the first evidence of the crust - mantle boundary. Further development of recording techniques and use of explosive seismic sources were employed for the delineation of the geological structures of mineral deposits (primarily oil and gas) as well as detailing the earth - mantle location and geometry. Ultra sonic techniques have been applied in the laboratory experiments to characterise rock sample velocities and its relationship to changes in temperature and stress. Active seismic tomography for hydrocarbon resources determination as well as for the earth structure utilized both reflection and refraction techniques. During the early 60’s seismic techniques were employed in active mines to investigate rock properties for geotechnical purposes. The objective of the Cave Front Tracking Experiment was to investigate whether active seismic tomography could potentially be used to track the cave back progression of a block cave mine. A small scale experiment was conducted to study the variations in seismic travel times associated with ray path refraction caused by stress changes and changes in the rock fabric induced by sub-level mining. A piezoelectric transducer was employed as an active seismic source and a seismic recording system was installed to monitor a volume of rock through which sub-level mining was propergated. Implementation involved the deployment of 11 seismic detectors and the recording of pre-stacked data. The experimental details and hardware characteristics are discussed, which includes technical problems encountered, the process and techniques of significant data stacking in order to recover weak signals generated by a piezoelectric seismic source and travel time variation calculation using signal cross-correlation. Signal travel time variation measurements were made over the course of a year and a half (2013-14), however only five months are investigated in detail and related to mining activities. Finite difference numerical modelling was also employed in order to create a better understanding of the sub-level mining process and its effect on seismic signal delay change. Technical problems associated with the signal processing and signal behavior interacting with an advancing mining front were identified and a number of techniques were employed to overcome problems faced by routine cave front estimation in a working mine environment. The field testing of a prototype impact source that is pneumatically driven and an eccentric rotating mass device is discussed.
- ItemParticle diffusion in elastically coupled narrow parallel channels(Stellenbosch : Stellenbosch University, 2014-12) Mateyisi, Mohau Jacob; Muller-Nedebock, Kristian K.; Boonzaaier, Leandro; Stellenbosch University. Faculty of Science. Dept. of Physics.ENGLISH ABSTRACT: We investigate a model system for particle diffusion in elastically coupled one-dimensional narrow channels. The elastic coupling of the channels is such that channels mutually affect the stochastic dynamics of particles. This kind of constrained and coupled stochastic diffusion may occur in supramolecular lattices where pore occupancy by guest particles may induce a reversible mechanical deformation of the lattice hence, affecting particle evolution in neighbouring pores. The model is explored first for out-of-equilibrium conditions, where we look mainly at the kinetic properties of the system, and thereafter under equilibrium conditions, where we try to understand the nature of dynamic correlation within the coupled channel system. For an out-of-equilibrium version of the model the focus is placed on the steady state behaviour of the two elastically coupled finite channels. The channels are kept in contact with particle reservoirs at the boundaries. Three current-density regimes of different distinct behaviour are identified using a simulation experiment. The sensitivity of the system mean occupancy profile and the steady state particle flux to small and large coupling parameter strength are explored. We find that, for small coupling strength, the system steady state profile and flux behaviour can be approximated by a simple mean field theory ignoring density-density correlations. We present the analytic description of the system using a cellular automaton formalism and then we generalize the theory for a multi-coupled channel system using a hopping particle dynamics approach. For small coupling parameter values, the analytic results are confirmed by the stochastic simulation. From the equilibrium perspective, we model the elastically coupled channel system as a system of infinite narrow channels having a uniform guest particle occupancy and we calculate density fluctuation correlation functions. The elastic coupling between channels is modelled as short range interacting potential and the particle evolution is modelled through Langevin dynamics. The dynamics are cast into the functional integral formalism expressed in terms of the collective particle number density, current density and the associated density response fields. The resulting generating functional takes these fields into consideration within the random phase approximation (RPA) up to second order. For a short range interaction potential, we uncover the behaviour of the system by looking at the influence of the inter-channel interaction strength on the dynamic density-density correlation functions. We conclude that the system long time limit effective friction coefficient is reduced with increase in the coupling parameter values while the strength of thermal forces for the effective system becomes renormalized. We also find out that the RPA breaks down under certain conditions, signalling a transition to a behaviour that is no longer characterised by a homogeneous density. The work presented here provides the beginnings for microscopic insights into the filling, filtering and storage processes for which certain types of microporous materials can be utilised.
- ItemPolymer networks with mobile force-applying crosslinks(Stellenbosch : University of Stellenbosch, 2011-03) Mateyisi, Mohau Jacob; Muller-Nedebock, Kristian; Boonzaaier, Leandro; University of Stellenbosch. Faculty of Science. Dept. of Physics.ENGLISH ABSTRACT: We construct and study a simple model for an active gel of exible polymer filaments crosslinked by a molecular motor cluster that perform reversible work while translating along the filaments. The filament end points are crosslinked to an elastic background. In this sense we employ a simplified model for motor clusters that act as slipping links that exert force while moving along the strands. Using the framework of replica theory, quenched averages are taken over the disorder which originates from permanent random crosslinking of network end points to the background. We investigate how a small motor force contributes to the elastic properties of the network. We learn that in addition to the normal elastic response for the network there is an extra contribution to the network elasticity from the motor activity. This depends on the ratio of the entropic spring constant for the linked bio-polymerchain to the spring constant of the tether of the motor.