Radiation Oncology
Permanent URI for this community
Browse
Browsing Radiation Oncology by browse.metadata.advisor "Slabbert, Jacobus"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemVariation in radiosensitivities of different individuals to high energy neutrons and 60Cobalt γ-rays(Stellenbosch : Stellenbosch University, 2012-12) Beukes, Philip Rudolph; Slabbert, Jacobus; Stellenbosch University. Faculty of Medicine and Health Sciences. Dept. of Medical Imaging and Clinical Oncology.ENGLISH ABSTRACT: Background: The assignment of radiation weighting factors to high energy neutron sources is important as there is reason to believe that neutron relative biological effectiveness (RBE) may be related to the inherent radiosensitivity of different individuals. A study was undertaken to quantify the inherent radiosensitivities of lymphocytes obtained from different donors to 60Co y-rays and p(66)/Be neutrons. For this a novel semi-automated image analysis process has been employed. In addition the responses of lymphocytes with different inherent radiosensitivities have also been tested using Auger electrons emitted by 123I. Methods: The RBE of neutrons was determined from dose-response curves for lymphocytes from different donors. Isolated T-lymphocytes irradiated in vitro were cultured to induce micronuclei in binucleated cells and micronuclei (MN) formations numerated using a semi-automated Metafer microscope system. The accuracy in obtaining dose response curves with this method has been tested by evaluating dispersion parameters of MN formations in the response to the different treatment modalities. Differences in the inherent radiosensitivities of cells from different donors were ascertained using 95 % confidence ellipses. [123I]Iododeoxyuridine was prepared in a formulation that allows incorporation of 123I into the DNA of lymphocytes. Micronucleus formations to this treatment were evaluated in lymphocytes with established differences in inherent radiosensitivities. Results: The image analysis system proved to be consistent in detecting micronuclei frequencies in binucleated lymphocytes. As a result, differences in the inherent radiosensitivities of different individuals were distinctive and could be stated at the 95% confidence level. The inter-individual radiosensitivity variations were considerably smaller for blood cells exposed to high energy neutrons compared to 60Co y-rays. Relative biological effectiveness (RBEM) values between 2 and 13 were determined that are highly correlated with the inherent radioresistance of lymphocytes obtained from different individuals. As such radiation weighting factors for high energy neutrons cannot be based on cytogenetic damage determined in lymphocytes from a single donor. Dispersion parameters for micronuclei formations proved to vary according to ionization density. The variation in RBE with neutron dose changed according to theoretical considerations and automated image analysis detection of MN is thus a suitable method to quantify radiation weighting factors. A clear reduction in the variation in radiosensitivity is noted for lymphocytes exposed to Auger electrons compared to 60Co y-rays. The effectiveness of Auger electrons from [123I]IUdR to induce biological damage is demonstrated as the number of disintegrations needed to yield micronuclei formations was found to be more than two orders of magnitude less than that of other compounds. An increase in the RBE of Auger electrons with radioresistance can be inferred from these findings and constitutes a basis for therapeutic gain in treating cells compared to using radioisotopes emitting low-LET radiation.