Doctoral Degrees (Institute for Wine Biotechnology)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Institute for Wine Biotechnology) by browse.metadata.advisor "Blassoples-Naidoo, Rene"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemExploring multispecies interactions between wine-associated yeasts(Stellenbosch : Stellenbosch University, 2021-12) Conacher, Cleo Gertrud; Bauer, Florian; Rossouw, Debra; Blassoples-Naidoo, Rene; Stellenbosch University. Faculty of AgriSciences. Institute for Wine Biotechnology.ENGLISH ABSTRACT: The fermentation of grape must to wine is catalysed by a diverse microbial community. Yeast are primary drivers of the associated alcoholic fermentation process and have therefore garnered considerable research interest. The diversity of yeast species present during wine fermentation influences the chemical composition and related sensory properties of wine as a result of the metabolic functioning of particular yeast species in response to abiotic and biotic factors. The latter is a relatively new research field, given that microbiological science has a significant monoculture bias, and as such, there is much still to be understood about the role and mechanisms of biotic stress in wine yeast ecosystems. Moreover, while the wine yeast ecosystem was the model used in this study, there are several other yeast ecosystems of biotechnological importance, including in biofuels production, bioremediation and other food and beverage industries, that would benefit from insight into these biotic stress mechanisms. The current basis of our understanding of the molecular mechanisms of yeast interactions in the wine ecosystem is based on two-species pairings, which keeps the system interaction network uncomplicated. However, there are many more role-players in natural ecosystems, and they do not interact in a linear fashion. At the micro- and macroscopic level, the importance of these often overlooked higher-order interactions has been highlighted in other ecosystems. There is very little information on higher-order interactions in the yeast ecology field, and this must be remedied for predictive understanding of these systems. Here, we sought to address the current status quo in multispecies yeast research, by aiming to develop new tools to investigate the mechanistic basis of interaction in systems comprised of more than two species. Furthermore, the study aimed to generate a greater depth of understanding of these systems, by investigating transcriptional responses of Saccharomyces cerevisiae to co-culture in mixed-species cultures of increasing complexity. Firstly, these aims were achieved by developing a fluorescence-based multi-colour flow cytometric method for tracking of a consortium consisting of wine-associated yeast species. This involved optimizing the genetic modification of the selected environmentally isolated yeast species, followed by extensive validation to confirm the representativeness of the system as well as development of the flow cytometric protocol. This was followed by addressing the pertinent issue of reproducibility in multispecies cultures, and showing the role of the physiological state of pre-cultures in determining their growth performance in three-species and four-species consortia. Finally, to contribute to our understanding of the molecular mechanisms of interaction in non-linear yeast systems, we showed that Saccharomyces cerevisiae expresses a combination of known pair-wise as well as unique genes when grown in a three-species system. By using interactive network visualizations of the generated transcriptomic data, we were able to functionally characterize the cellular responses in more detail than has been done before in similar studies.