Doctoral Degrees (Mechanical and Mechatronic Engineering)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Mechanical and Mechatronic Engineering) by browse.metadata.advisor "Blaine, DC"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemFracture mechanics-based fatigue life assessment of additively manufactured Ti-6Al-4V(Stellenbosch : Stellenbosch University, 2024-02) Macallister, N; Becker, Thorsten Hermann ; Blaine, DC; Stellenbosch University. Faculty of Engineering. Dept. of Mechanical and Mechatronic Engineering.ENGLISH ABSTRACT: This dissertation presents a study on fracture mechanics-based fatigue life assessment for Additively Manufacturing (AM). The mature laser powder bed fusion (LPBF) process with the Ti-6Al-4V alloy in particular is selected for study, as it is well suited to the South African context with regard to economic climate, strong AM relationships and abundant mineral titanium reserves available. Furthermore, the Ti-6Al-4V alloy is a staple of aerospace, automotive and biomedical industries which are amongst the largest promoters for using AM technology, and for whom fatigue characterisation remains a prevalent topic as many end-use applications are intended for cyclic loading. Though significant research in fatigue behaviour exists, the conundrum of reliably certifying fatigue life in AM parts persists. This problem stems from the complex relation between AM print parameters, build orientation, surface roughness, inherent defects, residual stresses, meso- and microstructure; and establishing reportable fatigue strength baseline values required by industry. Moreover, as the AM environment promises saving in cost and time, full fatigue testing schemas are undesirable. As such, alternate damage-tolerant methods are becoming increasingly popular, where adopting fracture mechanics-based frameworks accompanied by limited or non-destructive testing could aid in certification. For this purpose, the dissertation first presents a novel version of the fatigue predictive NASGRO model where parameters are established that are unique to LPBF produced Ti-6Al-4V meso- and microstructures. In establishing these parameters for LPBF produced Ti-6Al-4V, the influence of process inherent microstructure, residual stress, and orientational dependant meso- structure is considered through examining near-threshold in combination with steady-state fatigue crack growth rates. The analysis shows that the descriptors of material constraint are sensitive to build orientation and microstructure. Furthermore, the effect of residual stresses is observed to not be severe. In this a clear effect of build orientation and meso- and microstructure is established for selecting NASGRO model parameters. Secondly, the proposed NASGRO formulation is translated into a comprehensive novel damage-tolerant fracture mechanics-based model to estimate fatigue life. Non-uniform defect populations, typical of AM material, in terms of size, shape and location are captured through X-ray tomography and surface profilometry and used as inputs modelled as equivalent crack lengths. The fatigue strength estimations are shown to be sensitive to fatigue crack growth rate threshold parameters and short crack growth mechanic descriptions. Furthermore, by introducing multiple crack initiations, the fatigue estimates are shown as distributions and are sensitive to defect number. Finally, sub-size specimen testing is investigated as a potentially elegant solution to accompany fatigue life assessments for threshold validation. Where results show inconsistent near-threshold fatigue behaviour linked to the microstructure. In this, considering unique meso- and microstructural features of LPBF produced Ti-6Al-4V, the domain and suitability in using sub-size specimens for fatigue crack growth rate threshold testing is discussed. Overall, this dissertation walks the path required in establishing reliable damage tolerant fatigue life estimation approaches for LPBF produced Ti-6Al-4V. Providing fundamental insights into interactions of fracture mechanic mechanisms and descriptions necessary for reliably modelling fatigue behaviour, therefore contributing to the developing frameworks and philosophies in AM to help in certification of fatigue performance of LPBF produced Ti-6Al-4V components.