Doctoral Degrees (High Performance Computing)

Browse

Recent Submissions

Now showing 1 - 1 of 1
  • Item
    Modelling subject-specific patellofemoral joint dynamics
    (Stellenbosch : University of Stellenbosch, 2010-12) Muller, Jacobus Hendrik; Scheffer, C.; Elvin, A.; University of Stellenbosch. Faculty of Engineering. Dept. of Mechanical and Mechatronic Engineering.
    ENGLISH ABSTRACT: A methodology to facilitate analysis of dynamic subject-specific patellofemoral function is presented. An enhanced understanding of patellofemoral biomechanics will enable orthopaedic surgeons to identify the mechanisms responsible for imbalances in the joint stabilisers, while also providing objective information on which to base treatment methods. Dynamic patellofemoral function of three volunteers was simulated with a musculoskeletal computational model. The individuals underwent scans from which three-dimensional models of their patellofemoral joints were constructed. Skeletal muscles and soft tissue stabilisers were added to the skeletal models, after which subject-specific motion was simulated. After trochlear engagement, the patellae of the volunteers followed a lateral path, whereas patella tilt was subject-specific. Comparison of the predicted tilt and mediolateral position values at 30 degrees knee flexion to in-vivo MRI values showed a mean accuracy of 62.1 % and 96.9 % respectively. The patellofemoral contact load . quadriceps tendon load ratio varied between 0.7 and 1.3, whereas the mediolateral load component . resultant load ratio ranged between 0 and 0.4. Both parameters. values were similar to previous findings. The medial patellofemoral ligament tension decreased with knee flexion, while the patellar tendon-quadriceps tendon ratio followed a similar trend to that of previous findings (varied between 0.4 and 1.2). After induction of a tubercle osteotomy in the coronal plane, Volunteer One.s patella engaged the trochlear groove at an earlier knee flexion angle, while the patella of Volunteer Two only underwent a small medial displacement. Finite element analyses were employed to investigate the influence of the osteotomy on the patellofemoral pressure distribution. The mean pressure in Volunteer One.s patellofemoral joint was alleviated (17 % smaller) at all angles of flexion with the exception of 60 degrees (12 % greater). Pressure in Volunteer Two.s joint was alleviated at 30 and 45 degrees knee flexion (6 % smaller), while it was elevated (9.1 % greater) at other angles of flexion. Two commercial patellofemoral prostheses were tested on the three Volunteers. joints in the virtual environment. Prosthesis Two delivered patella shift and tilt patterns similar to the baseline values. Patellar tendon tension was slightly greater after resurfacing, with the tensions elevated most with Prosthesis Two. Medial patellofemoral ligament tension was reduced most with Prosthesis Two, while lateral retinaculum tension was increased slightly. Prosthesis Two was the best candidate to reproduce patella kinematics, while the patellofemoral kinetics was largely independent from the type of prosthesis used. The prostheses performed worse for Volunteer Three, supporting the need for the development of patient-specific prostheses. Three validated subject-specific musculoskeletal models facilitated the analysis of the individuals. patellofemoral biomechanics. The technique can potentially be employed by orthopaedic surgeons to visualise the change that an osteotomy or patellofemoral arthroplasty might induce on an individual.s patellofemoral joint. This technique might aid in the development of a tool to assist biomedical engineers in the development of new patellofemoral prostheses. Most importantly, the outcome of surgical intervention may be predicted beforehand, and a treatment procedure may be tailored to optimally fit the patellofemoral biomechanics of that individual.