Research Articles (Physiological Sciences)

Browse

Recent Submissions

Now showing 1 - 5 of 92
  • Item
    Spermidine and rapamycin reveal distinct autophagy flux response and cargo receptor clearance profile
    (MDPI, 2021-01-07) De Wet, Sholto; Du Toit, Andre; Loos, Ben
    Autophagy flux is the rate at which cytoplasmic components are degraded through the entire autophagy pathway and is often measured by monitoring the clearance rate of autophagosomes. The specific means by which autophagy targets specific cargo has recently gained major attention due to the role of autophagy in human pathologies, where specific proteinaceous cargo is insufficiently recruited to the autophagosome compartment, albeit functional autophagy activity. In this context, the dynamic interplay between receptor proteins such as p62/Sequestosome-1 and neighbour of BRCA1 gene 1 (NBR1) has gained attention. However, the extent of receptor protein recruitment and subsequent clearance alongside autophagosomes under different autophagy activities remains unclear. Here, we dissect the concentration-dependent and temporal impact of rapamycin and spermidine exposure on receptor recruitment, clearance and autophagosome turnover over time, employing micropatterning. Our results reveal a distinct autophagy activity response profile, where the extent of autophagosome and receptor co-localisation does not involve the total pool of either entities and does not operate in similar fashion. These results suggest that autophagosome turnover and specific cargo clearance are distinct entities with inherent properties, distinctively contributing towards total functional autophagy activity. These findings are of significance for future studies where disease specific protein aggregates require clearance to preserve cellular proteostasis and viability and highlight the need of discerning and better tuning autophagy machinery activity and cargo clearance.
  • Item
    Sarcopenic obesity in Africa: a call for diagnostic methods and appropriate interventions
    (Frontiers Media S.A, 2021-04) Mendham, Amy E.; Lundin-Olsson, Lillemor; Goedecke, Julia H.; Micklesfield, Lisa K.; Christensen, Dirk L.; Gallagher, Iain J.; Myburgh, Kathryn H.; Odunitan-Wayas, Feyisayo A.; Lambert, Estelle V.; Kalula, Sebastiana; Hunter, Angus M.; Brooks, Naomi E.
    This perspective aims to highlight the lack of current knowledge on sarcopenic obesity in Africa and to call for diagnostic methods and appropriate interventions. Sarcopenic obesity has been defined as obesity that occurs in combination with low muscle mass and function, which is typically evident in older adults. However, there has been no clear consensus on population-specific diagnostic criterion, which includes both gold-standard measures that can be used in a more advanced health care system, and surrogate measures that can be used in low-income settings with limited resources and funding. Importantly, low and middle-income countries (LMICs) across Africa are in an ongoing state of economic and social transition, which has contributed to an increase in the aging population, alongside the added burden of poverty, obesity, and associated co-morbidities. It is anticipated that alongside the increased prevalence of obesity, these countries will further experience an increase in age-related musculoskeletal diseases such as sarcopenia. The developmental origins of health and disease (DOHaD) approach will allow clinicians and researchers to consider developmental trajectories, and the influence of the environment, for targeting high-risk individuals and communities for treatment and/or prevention-based interventions that are implemented throughout all stages of the life course. Once a valid and reliable diagnostic criterion is developed, we can firstly assess the prevalence and burden of sarcopenic obesity in LMICs in Africa, and secondly, develop appropriate and sustainable interventions that target improved dietary and physical activity behaviors throughout the life course.
  • Item
    TEG®, Microclot and Platelet Mapping for Guiding Early Management of Severe COVID-19 Coagulopathy
    (MDPI, 2021-11) Laubscher, Gert Jacobus; Lourens, Petrus Johannes; Venter, Chantelle; Kell, Douglas B; Pretorius, Etheresia
    An important component of severe COVID-19 disease is virus-induced endothelilitis. This leads to disruption of normal endothelial function, initiating a state of failing normal clotting physiology. Massively increased levels of von Willebrand Factor (VWF) lead to overwhelming platelet activation, as well as activation of the enzymatic (intrinsic) clotting pathway. In addition, there is an impaired fibrinolysis, caused by, amongst others, increased levels of alpha-(2) antiplasmin. The end result is hypercoagulation (proven by thromboelastography® (TEG®)) and reduced fibrinolysis, inevitably leading to a difficult-to-overcome hypercoagulated physiological state. Platelets in circulation also plays a significant role in clot formation, but they themselves may also drive hypercoagulation when they are overactivated due to the interactions of their receptors with the endothelium, immune cells or circulating inflammatory molecules. From the literature it is clear that the role of platelets in severely ill COVID-19 patients has been markedly underestimated or even ignored. We here highlight the value of early management of severe COVID-19 coagulopathy as guided by TEG®, microclot and platelet mapping. We also argue that the failure of clinical trials, where the efficacy of prophylactic versus therapeutic clexane (low molecular weight heparin (LMWH)) were not always successful, which may be because the significant role of platelet activation was not taken into account during the planning of the trial. We conclude that, because of the overwhelming alteration of clotting, the outcome of any trial evaluating an any single anticoagulant, including thrombolytic, would be negative. Here we suggest the use of the degree of platelet dysfunction and presence of microclots in circulation, together with TEG®, might be used as a guideline for disease severity. A multi-pronged approach, guided by TEG® and platelet mapping, would be required to maintain normal clotting physiology in severe COVID-19 disease.
  • Item
    Serum amyloid A binds to fibrin(ogen), promoting fibrin amyloid formation
    (Nature Research (part of Springer Nature), 2019-02-28) Page, Martin J.; Thomson, Greig J. A.; Nunes, J. Massimo; Engelbrecht, Anna-Mart; Nell, Theo A.; De Villiers, Willem J. S.; De Beer, Maria C.; Engelbrecht, Lize; Kell, Douglas B.; Pretorius, Etheresia
    Complex associations exist between inflammation and thrombosis, with the inflammatory state tending to promote coagulation. Fibrinogen, an acute phase protein, has been shown to interact with the amyloidogenic ß-amyloid protein of Alzheimer’s disease. However, little is known about the association between fibrinogen and serum amyloid A (SAA), a highly fibrillogenic protein that is one of the most dramatically changing acute phase reactants in the circulation. To study the role of SAA in coagulation and thrombosis, in vitro experiments were performed where purified human SAA, in concentrations resembling a modest acute phase response, was added to platelet-poor plasma (PPP) and whole blood (WB), as well as purified and fluorescently labelled fibrinogen. Results from thromboelastography (TEG) suggest that SAA causes atypical coagulation with a fibrin(ogen)-mediated increase in coagulation, but a decreased platelet/fibrin(ogen) interaction. In WB scanning electron microscopy analysis, SAA mediated red blood cell (RBC) agglutination, platelet activation and clumping, but not platelet spreading. Following clot formation in PPP, the presence of SAA increased amyloid formation of fibrin(ogen) as determined both with auto-fluorescence and with fluorogenic amyloid markers, under confocal microcopy. SAA also binds to fibrinogen, as determined with a fluorescent-labelled SAA antibody and correlative light electron microscopy (CLEM). The data presented here indicate that SAA can affect coagulation by inducing amyloid formation in fibrin(ogen), as well as by propelling platelets to a more prothrombotic state. The discovery of these multiple and complex effects of SAA on coagulation invite further mechanistic analyses.
  • Item
    Parkinson’s disease : a systemic inflammatory disease accompanied by bacterial inflammagens
    (Frontiers Media, 2019-08-27) Adams, Buin; Nunes, J. Massimo; Page, Martin J.; Roberts, Timothy; Carr, Jonathan; Nell, Theo A.; Kell, Douglas B.; Pretorius, Etheresia
    Parkinson’s disease (PD) is a well-known neurodegenerative disease with a strong association established with systemic inflammation. Recently, the role of the gingipain protease group from Porphyromonas gingivalis was implicated in Alzheimer’s disease and here we present evidence, using a fluorescent antibody to detect gingipain R1 (RgpA), of its presence in a PD population. To further elucidate the action of this gingipain, as well as the action of the lipopolysaccharide (LPS) from P. gingivalis, low concentrations of recombinant RgpA and LPS were added to purified fluorescent fibrinogen. We also substantiate previous findings regarding PD by emphasizing the presence of systemic inflammation via multiplex cytokine analysis, and demonstrate hypercoagulation using thromboelastography (TEG), confocal and electron microscopy. Biomarker analysis confirmed significantly increased levels of circulating proinflammatory cytokines. In our PD and control blood analysis, our results show increased hypercoagulation, the presence of amyloid formation in plasma, and profound ultrastructural changes to platelets. Our laboratory analysis of purified fibrinogen with added RgpA, and/or LPS, showed preliminary data with regards to the actions of the protease and the bacterial membrane inflammagen on plasma proteins, to better understand the nature of established PD.