Cracking of Plastic Concrete in Slab-Like Elements

Date
2016-03
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: The cracking of plastic concrete involves two cracking types namely: plastic settlement cracking which is caused by differential settlement of the concrete and plastic shrinkage cracking which is caused by evaporation of free concrete pore water. These cracks are mainly a problem for slab-like elements exposed to conditions with high evaporation rates and typically occur within the first few hours after the concrete has been cast. The early occurrence of these cracks greatly reduces the durability and service life of a concrete structure. These cracks remain a problem in the construction industry even though there are several effective, but mostly neglected, precautionary measures. The reasons these cracks remain a problem are due to the complex nature of the cracking as well as the lack of a unified theory or model that can account for all the complexities involved. With this in mind, this study aims to fundamentally understand both plastic settlement and plastic shrinkage cracking in slab-like elements individually and combined as well as to determine the tensile material properties of plastic concrete. Once the cracking is fundamentally understood the final objective is to develop a model that can simulate the cracking of plastic concrete using a finite element method approach. The fundamental understanding of these cracks was obtained by conducting various tests on different mixes at various climates and in various moulds. The tests showed that both crack types can occur separately, where plastic settlement cracking occurs first in the form of multiple cracks at the surface as well as shear induced cracks beneath the surface, followed by plastic shrinkage cracking in the form of a singular, well defined crack. In addition, a significant deviation from the individual cracking behaviour was observed when combining these cracks, highlighting the shortfall of most available literature where these cracks are seldom researched in tandem. From all the tests, six different cracking behaviours were identified depending on the potential severity for each cracking type. The test also showed worryingly that both these cracks can be present internally without being visible at the concrete surface where they act as weak spots for future crack growth. The practically challenging tensile testing of plastic concrete was conducted with a newly built direct tensile test setup, which provided stress-strain curves that were used to determine the tensile material properties of plastic concrete such as: Young’s modulus, tensile strength, strain capacity and fracture energy. This included tests at different temperatures as well as cyclic tests. The results showed that the tensile material properties develop significantly faster, the greater the ambient temperature surrounding the concrete as well as the resilient nature of a still plastic concrete which proved to be capable of withstanding cyclic loading without failure, while a solid but still weak concrete could not. The tensile material properties together with the measured strains of plastic concrete were combined to provide both an analytical and numerical estimation of the cracking behaviour of plastic concrete. The analytical estimation was more simplistic and required a few crude assumptions, while the numerical estimation used finite element methods to create a model that accounted for the major complexities involved such as time-dependency of material properties and anisotropic volume change of plastic concrete. Both the analytical and finite element model gives adequate representation of the cracking behaviour for extreme climates but not for normal climates, with the size discrepancy between the interior and surface cracks during experiments as well as the relaxation of stresses in plastic concrete being provided as the main reasons for the poor correlation. The finite element model was further used to conduct a parameter study, where the settlement and shrinkage strains were shown to govern the size of the final crack, while the material properties only influence the time of crack onset and rate of crack widening. Finally, the finite element model was successfully applied to a large scale example of a concrete slab, indicating that the model can be a helpful tool to simulate the cracking of plastic concrete without the need to perform timely experiments.
AFRIKAANSE OPSOMMING: Die kraak van plastiese beton betrek twee kraak tipes naamlik: plastiese versakkings krake wat deur differensiële versakking veroorsaak word en plastiese krimp krake wat veroorsaak word deur die verdamping van vry porie water in beton. Die krake is hoofsaaklik ʼn probleem vir vloer-tipe elemente wat blootgestel word aan kondisies met hoë verdampings tempo’s en gebeur tipies binne die eerste paar ure nadat die beton gegiet is. Die vroeë voorkoms van die krake verlaag die duursaamheid en dienslewe van ʼn beton struktuur drasties. Die krake bly ʼn probleem in die konstruksiebedryf al is daar verskeie effektiewe, maar meestal geminagte, voorsorgmaatreëls. Die rede hoekom die krake ʼn probleem bly is weens die komplekse natuur van die krake sowel as ʼn gebrek aan ʼn algehele aanvaarde teorie of model wat al die kompleksiteite in ag neem. Na aanleiding van bogenoemde beoog die studie om fundamentele kennis te ontwikkel van beide plastiese versakkings en plastiese krimp krake in vloer-tipe elemente individueel en gekombineer sowel as om die trek materiaal eienskappe van plastiese beton te bepaal. Sodra die krake fundamenteel verstaan word, is die finale doel om ʼn model te ontwikkel wat die kraak van plastiese beton kan simuleer deur gebruik te maak van ʼn eindige element metode benadering. Die fundamentele kennis van die krake was verkry deur verskeie toetse te doen op verskillende mengsels by verskeie klimate in verskillende vorms. Die toetse het gewys dat beide kraak tipes afsonderlik kan plaasvind, met plastiese krimp krake wat eerste plaasvind as meervoudige krake op die oppervlakte sowel as skuif geïnduseerde krake onder die oppervlakte, gevolg deur plastiese krimp krake as goed gedefinieerde enkel kraak. Verder is ʼn drastiese verskil in individuele kraak gedrag opgemerk wanneer die krake gekombineer word. Dit beklemtoon die tekortkoming van meeste beskikbare literatuur waar beide kraak tipes selde in tandem ondersoek word. Uit al die toetse is ses verskillende tipes kraak gedrag geïdentifiseer afhanklik van die omvang van elke kraak tipe. Die toetse het ook kommerwekkend gewys dat beide kraak tipes intern teenwoordig kan wees sonder dat dit op die oppervlakte van die beton sigbaar is en dus kan dien as swakplek vir verdere kraking. Die praktiese uitdagende trek toetsing van plastiese beton was uitgevoer met ʼn nuut geboude direkte trektoetsopstelling, wat spanning-vervormings kurwes gelewer het vir die bepaling van die trek materiaal eienskappe van plastiese beton soos: Young’s modulus, trek sterkte, vervormings kapasitiet en fraktuur energie. Dit sluit in toetse by verskillende temperature sowel as sikliese toetse. Die resultate het gewys dat die trek materiaal eienskappe merkwaardig vinniger ontwikkel by hoër temperature sowel as die veerkragtige natuur van plastiese beton wat gesien kan word as ʼn materiaal wat sikliese belasting kan hanteer sonder faling, in vergelyking met ʼn meer soliede beton wat faling ondergaan. Verder is die trek materiaal eienskappe saam met die gemete vervormings van plastiese beton gekombineer om beide ʼn analitiese en numeriese voorstelling van kraak gedrag in plastiese beton te gee. Die analitiese voorstelling is meer simplisties en benodig ʼn paar gru aannames terwyl die numeriese voorstelling van eindige element metodes gebruik gemaak het om ʼn model te skep wat al die belangrike kompleksiteite in ag neem soos die tyd afhanklikheid van materiaal eienskappe en anisotropiese volume verandering. Beide die analitiese en eindige element model gee voldoende voorstelling van die kraak gedrag vir uiterste klimate, maar nie vir normale klimate nie. Die kraak grootte verskil tussen die interne krake en oppervlak krake tydens toetse sowel as die ontspanning van spannings in plastiese beton is gegee as redes vir die swak korrelasie. Die eindige element model is verder gebruik vir ʼn parameter studie wat gewys het dat die versakking en krimp vervormings die finale grootte van die krake bepaal, terwyl die materiaal eienskappe slegs die tyd van eerste kraakvorming en die tempo van kraakopening beïnvloed. Laastens is die eindige element model suksesvol aangewend om ʼn grootskaalse voorbeeld van ʼn betonvloer te analiseer, wat aantoon dat die model ʼn handige instrument kan wees vir die simulasie van krake in plastiese beton sonder die nodigheid om tydsame eksperimente uit te voer.
Description
Thesis (DEng)--Stellenbosch University, 2016.
Keywords
Concrete -- Expansion and contraction, Hydration, Concrete -- Detorioration, Concrete -- Cracking, Concrete -- Plastic properties, UCTD
Citation