Developing a suitable carbon calculator for smallholder mixed farming systems in Western Cape, South Africa

Barends, Vanessa (2016-03)

Thesis (MScAgric)--Stellenbosch University, 2016.

Thesis

ENGLISH ABSTRACT: With growing concerns about climate change, the measurement and monitoring of environmental impact has become a key priority. According to the World Bank, South Africa is among the top 20 global carbon dioxide emitters; and agricultural is one of the primary greenhouse gas polluters. The sector contributed approximately 21 289 tCO2 in 2000. Climate change, in turn, has had an adverse effect on agriculture by decreasing crop yields, creating food and water security concerns and decreasing sustainable agricultural land. Not only do farmers have to adapt to adverse climate conditions, but they also are expected to adhere to stringent retailer standards that often require them to measure their products’ greenhouse gas emissions. This therefore has led to the formulation of product carbon footprinting standards (PCFs), which are required for compliance by new markets on a yearly basis. The stringent retail standards flowed from the Kyoto Protocol which was established under the United Nations Framework Convention on Climate Change (UNFCCC) to set targets for reducing or limiting emissions over the period of 2008 to 2020. South Africa committed to the protocol and as such has to contribute towards global greenhouse gas (GHG) migration efforts. Under the Copenhagen Accord South Africa also pledged an emission reduction of 34% below business as usual by 2020 and 42% by 2025. A carbon footprint measures the total carbon dioxide (CO2) emissions that are being released into the atmosphere by an organisation, event, product or person on an annual basis. The carbon footprint can be calculated by using online carbon calculators, or by making use of carbon consultants, who generally are expensive. Several online carbon footprinting calculators are available, but they do not accommodate smallholder mixed farming systems. This study evaluates the available farming carbon calculators, highlights their limitations and identifies the needs of a smallholder mixed farming carbon calculator for South Africa, which will facilitate compliance with environmental standards, domestic food markets and to help create awareness of the emissions and resource use of smallholder farmers. This study thus provides the background for the development of a carbon calculator tool for mixed smallholder farming systems. The factors that were looked at were fuel and electricity usage, agro-chemicals, land-use changes, livestock, crops, processing and packhouse information, packaging, waste, cold storage information and distance travelled. The anticipated advantage of the tool is to equip smallholder farmers for the indirect effects of phase one of the anticipated carbon tax by providing them with the information needed to plan for more efficient farming activities as well as reducing input cots. An added benefit of the information gained from this calculator is that it is expected to assist smallholder farmers in identifying factors that are prohibiting them from complying with the larger retailer ‘green’ standards. Due to the limitations of the study a sample was taken from the Western Cape Department of Agriculture’s SimFini project, the project was selected as it provided an excellent example of proper financial recording keeping which is often lacking for smallholder farmers. The study also provides a profile of smallholder farmers in the Western Cape (WC). The sampled participants were used only to test the calculator’s success and the shortcomings of the recordkeeping system. The results from the calculator could further be used to assist smallholder farmers to identify their farm’s major emission sources, which if reduced could decrease their production costs and increase their retailer compliance. The main findings of the study are:  That although farmers have financial records in place, the operation records are not being kept; and  Enteric fermentation, agro-chemicals (which includes fertiliser), mobile fuels and electricity were the biggest emitters.

AFRIKAANSE OPSOMMING: Met toenemende kommer oor klimaatverandering het die meet en monitor van omgewingsimpakte ʼn belangrike prioriteit geword. Suid-Afrika ervaar tans talle uitdagings, onder andere met betrekking tot klimaatverandering, voedselsekuriteit en grondhervorming. Volgens die Wêreldbank is Suid-Afrika onder die top 20 lande wat die meeste koolstofdioksied (CO2) vrystel, waarvan die landbousektor een van die vernaamste kweekhuisgasbesoedelaars is, met ’n bydrae van 21 289t CO2 in 2000. Klimaatverandering, op sy beurt, het ’n nadelige effek op landbou deur opbrengste te verminder, voedsel- en watersekuriteit te bedreig en volhoubare landbougrond te verminder. Boere moet nie net by hierdie omstandighede aanpas nie, maar daar word ook van hulle verwag om streng handelaarstandaarde na te kom, wat gereeld van hulle vereis om die kweekhuisgasvrystellings van hulle produkte te meet. Hierdie het gevolglik gelei na die formulering van die “product carbon footprinting (PCF)” standaarde, wat op ’n jaarlikse basis deur nuwe markte nagekom moet word. Die streng handelstandaarde kom vanaf die Kyoto-protokol wat gestig is onder die Verenigde Nasies se raamwerkkonvensie oor klimaatsverandering. Die Kyoto-protokol is gestig om doelwitte te stel vir die vermindering van uitlaatgasse oor die tydperk vanaf 2008 tot 2020. Suid-Afrika is toegewyd aan hierdie protokol en behoort dus deel te neem aan pogings om globale groenhuisgasse te migreer deur mitigasiemaatreëls in plek te stel . Onder die Copenhagen Ooreenkoms het Suid-Afrika ook beloof om uitlaatgasse met 34% te verminder teen 2020 en ‘n beoogde vermindering van 42% teen 2025. ’n Koolstofvoetspoor meet die totale CO2-vrystelling van ’n organisasie, gebeurtenis, produk of persoon op ’n jaarlikse basis. Dit kan bereken word deur gebruik te maak van aanlyn- koolstofvoetspoorrekenaars of van konsultante, wat oor die algemeen duur is. Daar is baie sulke aanlynrekenaars beskikbaar, maar almal vereis internettoegang en akkommodeer ook nie gemengde kleinboerderystelsels nie. Hierdie studie evalueer die beskikbare aanlyn- koolstofvoetspoorrekenaars vir boerderye deur te fokus op hulle perke en om te identifiseer wat van so ’n rekenaar benodig word, spesifiek vir die unieke gemengde kleinboerderystelsel in Suid-Afrika. Hierdie identifikasieproses kyk na benodighede wat nakoming van omgewingstandaarde en plaaslike voedselmarkte sal fasiliteer en bewusmaking sal help skep oor die besoedeling en hulpbrongebruik van kleinboere. Die studie verskaf dus die agtergrond vir die ontwikkeling van ’n koolstofvoetspoor vir gemengde kleinboerstelsels. Die faktore waarna gekyk word, is brandstof- en elektrisiteitverbruik, landbou-chemikalieë, verandering van grondgebruik, vee, gewasse, verwerking, pakhuis-inligting, verpakking, afval, koelkamers en afstand gereis. Die verwagte voordeel is dat dit kleinboere sal toerus met die inligting wat benodig word vir die indirekte effekte van die eerste fase van die koolstofbelasting en sodat hulle meer effektiewe boerdery aktiwiteite kan beplan en ook insetkostes kan verminder. ’n Bykomende voordeel van die inligting wat verkry word, is die verwagting dat dit die kleinboere kan help om faktore wat hulle verhoed om groter handelaars se ‘groen’ standaarde na te kom, te identifiseer. As gevolg van die aard van die studie en die hoeveelheid kleinboere in die Wes-Kaap het die voorafgekose deelnemers almal die kleinboerderygemeenskap in die Wes-Kaap verteenwoordig. Die studie gee ook ‘n profiel van kleinboere in die Wes-Kaap. Die deelnemers is slegs gebruik om die sukses en die tekortkominge van die optekeningstelsel te toets. Die resultate van die studie kan dan gebruik word om kleinboere te help om hulle plase se kritiese probleemareas te identifiseer en sodoende hulle koolstof vrystellings en moontlik hul produksiekostes te verminder. Die hoof bevindinge van die studie is:  Alhoewel boere finansiële verslae in plek het, ontbreek die operasionele verslae nog steeds; en  Die grootste besoedelaars was enteriese fermentasie, landbou-chemikalieë (wat kunsmis insluit), mobiele brandstof en elektrisiteit.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/98403
This item appears in the following collections: