Analytic methods in combinatorial number theory

Baker, Liam Bradwin (2015-12)

Thesis (MSc)--Stellenbosch University, 2015

Thesis

ENGLISH ABSTRACT : Two applications of analytic techniques to combinatorial problems with number-theoretic flavours are shown. The first is an application of the real saddle point method to derive second-order asymptotic expansions for the number of solutions to the signum equation of a general class of sequences. The second is an application of more elementary methods to yield asymptotic expansions for the number of partitions of a large integer into powers of an integer b where each part has bounded multiplicity.

AFRIKAANSE OPSOMMING : Ons toon twee toepassings van analitiese tegnieke op kombinatoriese probleme met getalteoretiese geure. Die eerste is ’n toepassing van die reële saalpuntmetode wat tweede-orde asimptotiese uitbreidings vir die aantal oplossings van die ‘signum’ vergelyking vir ’n algemene klas van rye aflewer. Die tweede is ’n toepassing van meer elementêre metodes wat asimptotiese uitbreidings vir die aantal partisies van ’n groot heelgetal in magte van ’n heelgetal b, waar elke deel ’n begrensde meervoudigheid het, aflewer

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/98017
This item appears in the following collections: