Thermally driven natural circulation water pump

Hobbs, Kyle (2015-03)

Thesis (MEng)--Stellenbosch University, 2015.

Thesis

ENGLISH ABSTRACT: The water utilized by passive air-conditioning systems in buildings is typically required at higher elevations. The thermally driven natural circulation water pump (TDNCWP) is a passively driven pumping system for delivering water from ground level against gravity to a higher elevation. It consists of a humid air closed duct loop to which a temperature difference is applied, resulting in a density gradient driven flow. A hot water evaporation tray inside the loop at ground level introduces water vapour to the loop air flow, and a cold condensation plate inside the loop at the elevated level removes this water vapour for passive airconditioning usage. In this thesis, a one-dimensional theoretical and numerical simulation model is developed. Experiments were conducted on two experimental TDNCWP set-ups of different cross sectional areas to evaluate the pump design and the theoretical model. It is shown in this thesis that the TDNCWP can provide water at varied elevations using non-mechanical, passive means. A temperature difference of 9 to 12.5 °C induced an average velocity of 0.4 to 0.6 m/s for a duct cross section of 100 mm2. For a larger cross section of 400 mm2, a temperature difference of 2 to 5 °C induced an average velocity of 0.25 to 0.3 m/s. An asymmetrical velocity profile was observed which varied at different points in the loop. A water delivery rate of 1.2 to 7.5 L/day was experimentally determined which compares well to the passive air-conditioning water requirements of a small building. The theoretical model over-predicted the delivery rate at increased duct cross sectional areas but fared well when compared to the smaller experimental model results. Further refinement of the numerical model and the TDNCWP design is required, and recommendations were made regarding this. It is clear however that the TDNCWP provides an alternative to a conventional water pump for low-volume water pumping requirements.

AFRIKAANSE OPSOMMING: Die water wat gebruik word deur passiewe lugversorgingstelsels in geboue word tipies benodig op hoër vlakte. Die termies gedrewe natuurlike sirkulasie waterpomp (TDNCWP) is ʼn passiewe gedrewe pomp stelsel vir die lewering van water vanaf die grondvlak teen swaartekrag na ʼn hoër vlak. Dit bestaan uit 'n vogtige geslote lug geut siklus waarop ʼn temperatuur verskil toegepas word, dit lei tot vloei gedrewe deur ʼn digtheids gradiënt. ʼn Warm water verdampings-pan binne die geut op grondvlak stel waterdamp aan die geut lugvloei toe, en ʼn koue kondensasie plaat binne die geut op die verhoogde vlak verwyder hierdie waterdamp vir passiewe lugversorgings gebruik. In hierdie tesis word ʼn eendimensionele teoretiese en numeriese simulasie model ontwikkel. Eksperimente is uitgevoer op twee eksperimentele TDNCWP stelsels van verskillende deursnee grootes om die pomp ontwerp en die teoretiese model te evalueer. Die tesis dui aan dat die TDNCWP water kan voorsien teen verskillende hoogtes op ʼn nie-meganiese, passiewe wyse. ʼn Temperatuur verskil van 9 tot 12.5 °C veroorsaak ʼn gemiddelde snelheid van 0.4 tot 0.6 m/s vir ʼn geut deursnit van 100 mm2.Vir ʼn groter deursnit van 400 mm2, het ʼn temperatuur verskil van 2 tot 5 °C ʼn gemiddelde snelheid van 0.25 tot 0.3 m/s veroorsaak. ʼn Asimmetriese snelheidsprofiel was waargeneem wat gewissel het op verskillende punte in die siklus. ʼn Water voorsienings tempo van 1.2 tot 7.5 L / dag was eksperimenteel waargeneem wat goed vergelyk met die passiewe water lugversorging vereistes van 'n klein gebou. Die teoretiese model het ʼn groter voorsienings tempo voorspel vir die groot deursneë, maar het goed gevaar in vergelyking met die kleiner eksperimentele model. Verdere verfyning van die numeriese model en die TDNCWP ontwerp word vereis, en aanbevelings is gemaak ten opsigte van hiervan. Dit is egter duidelik dat die TDNCWP ʼn alternatief is vir konvensionele lae-volume water pomp applikasies.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/97066
This item appears in the following collections: