Recovery based error estimation for the Method of Moments

Strydom, Willem Jacobus (2015-03)

Thesis (MEng)--Stellenbosch University, 2015.


ENGLISH ABSTRACT: The Method of Moments (MoM) is routinely used for the numerical solution of electromagnetic surface integral equations. Solution errors are inherent to any numerical computational method, and error estimators can be effectively employed to reduce and control these errors. In this thesis, gradient recovery techniques of the Finite Element Method (FEM) are formulated within the MoM context, in order to recover a higher-order charge of a Rao-Wilton-Glisson (RWG) MoM solution. Furthermore, a new recovery procedure, based specifically on the properties of the RWG basis functions, is introduced by the author. These recovered charge distributions are used for a posteriori error estimation of the charge. It was found that the newly proposed charge recovery method has the highest accuracy of the considered recovery methods, and is the most suited for applications within recovery based error estimation. In addition to charge recovery, the possibility of recovery procedures for the MoM solution current are also investigated. A technique is explored whereby a recovered charge is used to find a higher-order divergent current representation. Two newly developed methods for the subsequent recovery of the solenoidal current component, as contained in the RWG solution current, are also introduced by the author. A posteriori error estimation of the MoM current is accomplished through the use of the recovered current distributions. A mixed second-order recovered current, based on a vector recovery procedure, was found to produce the most accurate results. The error estimation techniques developed in this thesis could be incorporated into an adaptive solver scheme to optimise the solution accuracy relative to the computational cost.

AFRIKAANSE OPSOMMING: Die Moment Metode (MoM) vind algemene toepassing in die numeriese oplossing van elektromagnetiese oppervlak integraalvergelykings. Numeriese foute is inherent tot die prosedure: foutberamingstegnieke is dus nodig om die betrokke foute te analiseer en te reduseer. Gradiënt verhalingstegnieke van die Eindige Element Metode word in hierdie tesis in die MoM konteks geformuleer. Hierdie tegnieke word ingespan om die oppervlaklading van 'n Rao-Wilton-Glisson (RWG) MoM oplossing na 'n verbeterde hoër-orde voorstelling te neem. Verder is 'n nuwe lading verhalingstegniek deur die outeur voorgestel wat spesifiek op die eienskappe van die RWG basis funksies gebaseer is. Die verhaalde ladingsverspreidings is geïmplementeer in a posteriori fout beraming van die lading. Die nuut voorgestelde tegniek het die akkuraatste resultate gelewer, uit die groep verhalingstegnieke wat ondersoek is. Addisioneel tot ladingsverhaling, is die moontlikheid van MoM-stroom verhalingstegnieke ook ondersoek. 'n Metode vir die verhaling van 'n hoër-orde divergente stroom komponent, gebaseer op die verhaalde lading, is geïmplementeer. Verder is twee nuwe metodes vir die verhaling van die solenodiale komponent van die RWG stroom deur die outeur voorgestel. A posteriori foutberaming van die MoM-stroom is met behulp van die verhaalde stroom verspreidings gerealiseer, en daar is gevind dat 'n gemengde tweede-orde verhaalde stroom, gebaseer op 'n vektor metode, die beste resultate lewer. Die foutberamingstegnieke wat in hierdie tesis ondersoek is, kan in 'n aanpasbare skema opgeneem word om die akkuraatheid van 'n numeriese oplossing, relatief tot die berekeningskoste, te optimeer.

Please refer to this item in SUNScholar by using the following persistent URL:
This item appears in the following collections: