Shrinkage characterisation, behavioural properties and durability of cement-stabilised pavement materials

Date
2015-03
Authors
Mbaraga, Alex Ndiku
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: With the depletion of high quality conventional materials for road pavements, the consideration of cement stabilisation for sub-base and base layer materials often provide a feasible solution to the road industry. Like all pavement material types, the design inputs should be determined using reliable test methods, which provide a good indication of the property of materials. Any evaluation should provide a better understanding of the engineering and behavioural properties of the materials. This should form the basis for ascertaining their suitability for use in the pavement structure. However, the road industry is dependent on strength testing of cement-stabilised materials as a means to ascertain material suitability for use. Strength alone does not offer reliable insight regarding the performance and durability of the stabilised layer. This is because a cement-stabilised layer may be very stiff but not strong enough to withstand the loading and endure adverse environmental conditions. Similarly, the stabilised layer may be prone to cracking emanating from shrinkage, which leads to performance and durability related distresses. A stabilised sub-base and base of the pavement structure experiences tensile stresses and strains under traffic loading. At laboratory level, the flexural beam test simulates to an acceptable degree the mode of stress to strain to which the pavement layer experiences. However, the test lacks a standard test protocol. This leads to inconsistencies while evaluating the same material type. Due to this fact, the formulation of a standard laboratory test procedure is necessary. Shrinkage cracking is one of the major causes of pavement failure. The manifestation of wide cracks leads to performance related distresses. Cracks provide zones for the infiltration of water into the underlying layers, an aspect that results in further deterioration of the pavement structure. However, the evaluation of shrinkage at laboratory level is not usually undertaken. Disregarding shrinkage evaluation stems from the fact that a number of guidelines consider it as a natural material characteristic. The road industry frequently depends on the use of low cement contents among other techniques as a means to mitigate shrinkage cracking in cement-stabilised layers. The selection of a mitigation measure usually lacks reliable data concerning the material’s shrinkage potential. Because of this, the requirement to evaluate shrinkage at laboratory level as part of a material property measure provides a good indication regarding the quality of material. Nanotechnology products such as the Nanotterra Soil® a polymer cement additive are purported to mitigate shrinkage cracking in cement-stabilised layers. However, their suitability for use remains unspecified and dependent on the stakeholders. With the development of a shrinkage method, the evaluation of shrinkage reducing products can be undertaken. This research proposes a flexural beam test protocol for cement-stabilised materials, comprising of a span-depth ratio of nine or greater as fitting to provide a reliable measure of the material’s flexural strength and elastic modulus. The developed shrinkage test method provides a good repeatability and is user friendly. The test provides a good indication of the shrinkage criteria of ferricrete and hornfels with and without the polymer. The efficacy of the polymer is dependent on the cement content in the mix and the type and quality of the material. The research provides insight pertaining to the characterisation of shrinkage, behavioural properties, and durability of cement-stabilised materials. Analysis of the shrinkage crack pattern reveals that use of the polymer lessens the development of tensile stress in a cement-stabilised layer. Equally, the application of the low cement contents for stabilisation may not result in cracking of the stabilised layer. This research contributes to a better understanding of cement-stabilised materials.
AFRIKAANSE OPSOMMING: Namate hoë kwaliteit konvensionele materiale uitgeput raak, word sementstabilisasie van stutlaag en kroonlaag materiale al hoe meer oorweeg en is dit ʼn geskikte oplossing vir die padbou-nywerheid. Soos vir alle padboumateriale moet die ontwerpeienskappe bepaal word deur middel van betroubare toetsmetodes wat ʼn goeie aanduiding van die materiaal se eienskappe sal gee. Enige evaluering moet ʼn beter insae in die materiaal se ingenieurseienskappe en gedrag oplewer. Dit moet dan die basis vorm om die materiaal se gebruik in ʼn padstruktuur te evalueer. Die padbou-nywerheidmaak grootliks staat op die toetsing van skuifsterkte van sementgestabiliseerde materiaal om die geskiktheid daarvan vir gebruik te bepaal. Sterkte op sigself lewer egter nie ʼn betroubare maatstaf van die materiaal se gedrag en duursaamheid nie. Dit is aangesien ʼn sementgestabiliseerde laag baie solied mag wees maar nogtans nie sterk genoeg om belasting te weerstaan en bestand teen omgewingstoestande te wees nie. Net so mag ʼn gestabiliseerde laag vatbaar vir kraakvorming as gevolg van krimping wees en dit kan lei tot duursaamheid-verwante en werkverwante skade. ʼn Gestabiliseerde stutlaag en kroonlaag in die plaveiselstruktuur is onderhewig aan trekspannings en vervormings as gevolg van verkeerslaste. Op laboratoriumvlak boots die balkbuigtoets die spanning en vervorming wat ʼn plaveisellaag ondervind tot ʼn aanvaarbaar hoë mate na. Die toets beskik nie oor ʼn standaard-toetsprosedure nie. Dit lei tot afwykings terwyl dieselfde materiaal evalueer word. Om hierdie rede is die ontwikkeling van ʼn standaard-laboratoriumprosedure nodig. Krimpkraking is een van die grootste oorsake van plaveiselswigting. Die onwikkeling van wye krake lei tot werksverwante skade. Krake veroorsaak areas vir die infiltrasie van water in die onderliggende plaveisellae wat verdere agteruitgang van die plaveiselstruktuur veroorsaak. Desnieteenstaande word ʼn evaluering van kraking op laboratoriumvlak selde gedoen. Dit spruit uit die feit dat ʼn aantal ontwerp-riglyne kraking as ʼn natuurlike materiaaleienskap beskou. Die padbounywerheid moet dikwels staatmaak, op onder andere, ʼn lae sementinhoud om krimpkraking te minimeer. Hierdie tipe benadering gaan dikwels mank aan betroubare inligting oor die materiaal se krimpingspotensiaal. Om hierdie rede is die ondersoek van krimping op laboratoriumvlak nodig as deel van die ondersoek van die materiaaleienskappe om die kwaliteit van materiale te bepaal. Minimeringstegnieke verander deurlopend. Die toepassing van nanotegnologieprodukte, soos Nanotterra Soil®, ‘n polimeersement bymiddel, wat na bewering krimpkraking in sementgestabiliseerde lae kan minimeer, kom voortdurend op die mark. Nogtans bly hulle geskiktheid ongespesifiseerd en afhanklik van die leweransiers. Indien ʼn krimptoetsmetode ontwikkel word, sal die effektiwiteit van krimpverminderingsmiddels getoets kan word. Hierdie navorsing stel die ontwikkeling van ʼn toetsprosedure vir ʼn balkbuigtoets voor met ʼn spanlengte tot diepteverhouding van minstens nege as betroubare maatstaf van ʼn materiaal se buigsterkte en modulus van elastisiteit. Die ontwikkelde krimptoetsmetode lewer ʼn goeie herhaalbaarheid en is gebruikersvriendelik. Die toets verskaf ʼn goeie aanduiding van krimpingskriteria van ferrikreet en horingfels met en sonder polimeer. Die effektiwiteit van die polimeer hang af van die sementinhoud in die mengsel asook die tipe en kwaliteit van die materiaal. Die navorsing verskaf insig aangaande die karakterisering van krimping, gedragseienskappe en duursaamheid van sementgestabiliseerde materiale. Die navorsing help mee om sementgestabiliseerde materiale beter te verstaan.
Description
Thesis (PhD)--Stellenbosch University, 2015.
Keywords
Cement-stabilised pavement materials -- Shrinkage characterisation, Cement-stabilised pavement materials -- Behavioural properties, Cement-stabilised pavement materials -- Durability, UCTD
Citation