# Edge criticality in secure graph domination

De Villiers, Anton Pierre (2014-12)

Thesis (PhD)--Stellenbosch University, 2014.

Thesis

ENGLISH ABSTRACT: The domination number of a graph is the cardinality of a smallest subset of its vertex set with the property that each vertex of the graph is in the subset or adjacent to a vertex in the subset. This graph parameter has been studied extensively since its introduction during the early 1960s and finds application in the generic setting where the vertices of the graph denote physical entities that are typically geographically dispersed and have to be monitored efficiently, while the graph edges model links between these entities which enable guards, stationed at the vertices, to monitor adjacent entities. In the above application, the guards remain stationary at the entities. In 2005, this constraint was, however, relaxed by the introduction of a new domination-related parameter, called the secure domination number. In this relaxed, dynamic setting, each unoccupied entity is defended by a guard stationed at an adjacent entity who can travel along an edge to the unoccupied entity in order to resolve a security threat that may occur there, after which the resulting configuration of guards at the entities is again required to be a dominating set of the graph. The secure domination number of a graph is the smallest number of guards that can be placed on its vertices so as to satisfy these requirements. In this generalised setting, the notion of edge removal is important, because one might seek the cost, in terms of the additional number of guards required, of protecting the complex of entities modelled by the graph if a number of edges in the graph were to fail (i.e. a number of links were to be eliminated form the complex, thereby disqualifying guards from moving along such disabled links). A comprehensive survey of the literature on secure graph domination is conducted in this dissertation. Descriptions of related, generalised graph protection parameters are also given. The classes of graphs with secure domination number 1, 2 or 3 are characterised and a result on the number of defenders in any minimum secure dominating set of a graph without end-vertices is presented, after which it is shown that the decision problem associated with computing the secure domination number of an arbitrary graph is NP-complete. Two exponential-time algorithms and a binary programming problem formulation are presented for computing the secure domination number of an arbitrary graph, while a linear algorithm is put forward for computing the secure domination number of an arbitrary tree. The practical efficiencies of these algorithms are compared in the context of small graphs. The smallest and largest increase in the secure domination number of a graph are also considered when a fixed number of edges are removed from the graph. Two novel cost functions are introduced for this purpose. General bounds on these two cost functions are established, and exact values of or tighter bounds on the cost functions are determined for various infinite classes of special graphs. Threshold information is finally established in respect of the number of possible edge removals from a graph before increasing its secure domination number. The notions of criticality and stability are introduced and studied in this respect, focussing on the smallest number of arbitrary edges whose deletion necessarily increases the secure domination number of the resulting graph, and the largest number of arbitrary edges whose deletion necessarily does not increase the secure domination number of the resulting graph.

AFRIKAANSE OPSOMMING: Die dominasiegetal van ’n grafiek is die kardinaalgetal van ’n kleinste deelversameling van die grafiek se puntversameling met die eienskap dat elke punt van die grafiek in die deelversameling is of naasliggend is aan ’n punt in die deelversameling. Hierdie grafiekparameter is sedert die vroeë 1960s uitvoerig bestudeer en vind toepassing in die generiese situasie waar die punte van die grafiek fisiese entiteite voorstel wat tipies geografies verspreid is en doeltreffend gemonitor moet word, terwyl die lyne van die grafiek skakels tussen hierdie entiteite voorstel waarlangs wagte, wat by die entiteite gebaseer is, naasliggende entiteite kan monitor. In die bogenoemde toepassing, bly die wagte bewegingloos by die fisiese entiteite waar hulle geplaas word. In 2005 is hierdie beperking egter verslap met die daarstelling van ’n nuwe dominasie-verwante grafiekparameter, bekend as die sekure dominasiegetal. In hierdie verslapte, dinamiese situasie word elke punt sonder ’n wag deur ’n wag verdedig wat by ’n naasliggende punt geplaas is en wat langs die verbindingslyn na die leë punt kan beweeg om daar ’n bedreiging te neutraliseer, waarna die gevolglike plasing van wagte weer ’n dominasieversameling van die grafiek moet vorm. Die sekure dominasiegetal van ’n grafiek is die kleinste getal wagte wat op die punte van die grafiek geplaas kan word om aan hierdie vereistes te voldoen. Die beginsel van lynverwydering speel ’n belangrike rol in hierdie veralgemeende situasie, omdat daar gevra mag word na die koste, in terme van die addisionele getal wagte wat vereis word, om die kompleks van entiteite wat deur die grafiek gemodelleer word, te beveilig indien ’n aantal lynfalings in die grafiek plaasvind (m.a.w. indien ’n aantal skakels uit die kompleks van entiteite verwyder word, en wagte dus nie meer langs sulke skakels mag beweeg nie). ’n Omvattende literatuurstudie oor sekure dominasie van grafieke word in hierdie verhandeling gedoen. Beskrywings van verwante, veralgemeende verdedigingsparameters in grafiekteorie word ook gegee. Die klasse van grafieke met sekure dominasiegetal 1, 2 of 3 word gekarakteriseer en ’n resultaat oor die getal verdedigers in enige kleinste sekure dominasieversameling van ’n grafiek sonder endpunte word daargestel, waarna daar getoon word dat die beslissingsprobleem onderliggend aan die berekening van die sekure dominasiegetal van ’n arbitrêre grafiek NP- volledig is. Twee eksponensiële-tyd algoritmes en ’n binêre programmeringsformulering word vir die bepaling van die sekure dominasiegetal van ’n arbitrêre grafiek daargestel, terwyl ’n lineêre algoritme vir die berekening van die sekure dominasiegetal van ’n arbitrêre boom ontwerp word. Die praktiese doeltreffendhede van hierdie algoritmes word vir klein grafieke met mekaar vergelyk. Die kleinste en groostste toename in die sekure dominasiegetal van ’n grafiek word ook oorweeg wanneer ’n vaste getal lyne uit die grafiek verwyder word. Twee nuwe kostefunksies word vir hierdie doel daargestel en algemene grense word op hierdie kostefunksies vir arbitrêre grafieke bepaal, terwyl eksakte waardes van of verbeterde grense op hierdie kostefunksies vir verskeie oneindige klasse van spesiale grafieke bereken word. Drempelinligting word uiteindelik bepaal in terme van die moontlike getal lynverwyderings uit ’n grafiek voordat die sekure dominasiegetal daarvan toeneem. Die konsepte van kritiekheid en stabiliteit word in hierdie konteks bestudeer, met ’n fokus op die kleinste getal arbitrêre lynfalings wat noodwendig die sekure dominasiegetal van die gevolglike grafiek laat toeneem, of die grootste getal arbitrêre lynfalings wat noodwendig die sekure dominasiegetal van die gevolglike grafiek onveranderd laat.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/95841

This item appears in the following collections: