Flight control system for an autonomous parafoil

Date
2013-12
Authors
Van der Kolf, Gideon
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: This thesis presents the development of a flight control system (FCS) for an unmanned, unpowered parafoil and the integration with an existing parafoil system in collaboration with a team at the University of Cape Town (UCT). The main goal of the FCS is to autonomously guide the parafoil from an arbitrary deployment position to a desired landing target. A nonlinear 8 degrees of freedom (8-DOF) parafoil model by C. Redelinghuys is incorporated into a MATLAB Simulink simulation environment. The non-linear model is numerically linearised and modal decomposition techniques are used to analyse the natural modes of motion. All modes are determined to be stable but a poorly damped lateral payload relative twist mode is present which causes large payload yaw oscillations. The FCS is divided into stability augmentation, control and guidance subcomponents. Stability augmentation is proposed in the form of a yaw rate damper which provides artificial damping for the oscillatory payload twist mode. For control, a yaw rate controller is designed with the aim of a fast response while not exciting the payload twist oscillation. Subsequently, an existing guidance method is implemented for path following. Autonomous path planning and mission control logic is created, including an energy management (EM) method to eliminate excess height and a terminal guidance (TG) phase. The TG phase is the final turn before landing and is the last chance to influence landing accuracy. A TG algorithm is implemented which generates an optimal final turn and can be replanned en route to compensate for unknown wind and other disturbances. The FCS is implemented on existing avionics, integrated with the parafoil system and verified with hardware in the loop (HIL) simulations. Flight tests are presented but are limited to remote control (RC) tests that verify the integration of the avionics and the parafoil system and test preliminary FCS components.
AFRIKAANSE OPSOMMING: Hierdie tesis dra die ontwikkeling voor van ‘n vlug-beheerstelsel (VBS) vir ’n onbemande, onaangedrewe valskerm-sweeftuig (parafoil), asook die integrasie daarvan met ’n bestaande stelsel. Die projek is in samewerking met ’n span van die Universiteit van Kaapstad (UCT) uitgevoer. Die VBS se hoof doel is om die sweeftuig outonoom vanaf ’n arbitrêre beginpunt na ’n gewensde landingsteiken te lei. ’n Nie-lineêre 8 grade van vryheid sweeftuig model deur C. Redelinghuys is in die MATLAB Simulink omgewing geïnkorporeer. Die nie-lineêre model is numeries gelineariseer om ’n lineêre model te verkry, waarna die natuurlike gedrag van die tuig geanaliseer is. ’n Swak gedempte laterale draai ossillasie van die loonvrag is geïdentifiseer. Die VBS is opgedeel in stabiliteitstoevoeging, beheer en leiding. ’n Giertempo-demper (yaw rate damper) is as stabiliteitstoevoeging om die loonvrag ossillasie kunsmatig te demp, voorgestel. ’n Giertempo-beheerder is ontwerp met die klem op ’n vinnige reaksie terwyl die opwekking van die loonvrag ossillasie terselfdetyd verhoed word. Daarna is ’n bestaande metode vir trajekvolging geïmplementeer. Outonome padbeplanning en oorhoofse vlugplan logika is ontwikkel, insluitend ’n energie-bestuur (EB) metode, om van oortollige hoogte ontslae te raak, asook ’n terminale leiding (TL) metode. Die TL fase verwys na die finale draai voor landing en is die laaste kans om die landingsakkuraatheid te beïnvloed. ’n Bestaande TL algoritme is geïmplementeer wat ’n optimale trajek genereer en in staat is om vir wind en ander versteurings te kompenseer deur die trajek deurgaans te herbeplan. Die VBS is op bestaande avionika geïmplementeer, met die sweeftuigstelsel geïntegreer en met behulp van hardeware in die lus (HIL) simulasies geverifieer. Vlugtoetse is voorgedra, maar is egter beperk tot radio beheer vlugte wat die korrekte integrasie van die avionika en die voertuig toets, asook ’n beperkte aantal voormalige VBS toetse.
Description
Thesis (MScEng)-- Stellenbosch University, 2013.
Keywords
Parafoils, Flight control, Drone aircraft, Yawing (Aerodynamics), Parachutes, Dissertations -- Electrical and electronic engineering, Autonomous robots -- Control systems
Citation