Air-cooled condenser steam flow distribution and related dephlegmator design considerations

Owen, Michael Trevor Foxwell (2013-12)

Thesis (PhD)--Stellenbosch University, 2013.

Thesis

ENGLISH ABSTRACT: The steam-side side operation of a practical air-cooled steam condenser is investigated using a combination of CFD, numerical, analytical and experimental methods. Particular attention is directed towards the vapor flow distribution in the primary condensers and dephlegmator performance. Analysis of the vapor flow in the distributing manifold, connecting the steam turbine exhaust to the air-cooled heat exchangers, highlights the importance of careful design of the guide vanes in the manifold bends and junctions. Improved guide vane design and configuration can reduce the steam-side pressure drop over the manifold and improve the vapor flow distribution, which may be beneficial to condenser operation. The vapor flow in the primary condensers is shown to exhibit a non-uniform distribution amongst the heat exchanger tubes. The vapor flow distribution is strongly linked to the distribution of tube inlet loss coefficients through the heat exchanger bundles. The non-uniform flow distribution places an additional demand on dephlegmator performance, over and above the demands of row effects in the case of multi-row primary condenser bundles. Row effects are shown to account for as much as 70 % of available dephlegmator capacity in this case. Simultaneously, inlet loss coefficient distributions can account for up to 30 % of dephlegmator capacity. In some situations then, the dephlegmator is fully utilized under ideal operating conditions and there is no margin of safety to cope with non-ideal operation of the primary condensers. The upstream regions of the primary condensers are therefore exposed to a high risk of undesirable noncondensable gas accumulation. Reduced dephlegmator capacity due to insufficient ejector performance may further compound this problem. Single-row primary condenser bundles eliminate row effects and thereby significantly reduce the demands on dephlegmator performance. The use of such bundles in the dephlegmator would also measurably reduce ejector loading. In light of the findings of this study, it is recommended that single-row bundles be considered as the primary option for future air-cooled condenser applications. A hybrid (dry/wet) dephlegmator concept is analysed and shown to be able to provide measurably enhanced dephlegmator performance when operating in wet mode, while consuming only a small amount of water. The enhanced dephlegmator cooling translates to an increase in total air-cooled condenser capacity of up to 30 % at high ambient temperatures in this case. The benefit of this enhanced cooling capacity to steam turbine output may be significant. The hybrid dephlegmator concept therefore offers a simple, cost-effective and sustainable solution to the issue of reduced air-cooled condenser performance during hot periods. Careful design of the first and second stage bundle configurations in the hybrid dephlegmator is necessary to avoid flooding in the first stage during wet operation of the second. Furthermore, the slightly poorer dry-operation performance of the hybrid dephlegmator results in increased risk of non-condensable gas accumulation in multi-row primary condensers. Again, single-row primary condenser bundles would lay rest to such concerns.

AFRIKAANSE OPSOMMING: Die bedryf aan die stoom-kant van ʼn praktiese lugverkoelde-stoomkondensor word ondersoek met behulp van 'n kombinasie van berekeningsvloeimeganika, numeriese, analitiese en eksperimentele metodes. ʼn Spesifieke fokus word geplaas op die dampvloeiverspreiding in die primêre kondensors asook die deflegmatorwerksverrigting. Ontleding van die damp vloei in die verdeelspruitstuk, wat die uitlaat van die stoomturbine aan die lugverkoelde-stoomkondensor koppel, beklemtoon die belangrikheid van noukeurige ontwerp van die leilemme in die spruitstukdraaie en aansluitings. Verbeterde leilemontwerp en opstelling kan die drukval aan die stoom-kant van die draaie en aansluitings verminder en die dampvloeiverspreiding verbeter. Dit kan gevolglik lei tot verbeterde werksverrigting van die kondensor. Die studie toon dat ʼn nie-eenvormige dampvloeiverspreiding in die warmteruilerbuise van die primêre kondensors bestaan. Die verspreiding van buisinlaat-verlieskoëffisiënte deur die bundels van die warmteruiler is sterk afhanklik van die voorgenome dampvloeiverspreiding. Die nie-eenvormige vloeiverspreiding veroorsaak 'n groter aanvraag na deflegmator-werksverrigting, bo-en-behalwe nog vereistes van ry-effekte in die geval waar multi-ry-bundels vir primêre kondensors gebruik word. Ry-effekte is verantwoordelik vir so veel as 70 % van die beskikbare deflegmator kapasiteit. Terselfdertyd kan die verspreiding van inlaat-verlieskoëffisiënte verantwoordelik wees vir tot 30 % van die deflegmator kapasiteit. In sommige gevalle is die deflegmator dus ten volle aangewend onder ideale bedryfstoestande, en bestaan daar geen band van veiligheid om nie-ideale werksverrigting van die primêre kondensor te hanteer nie. Sekere dele van die stroom-op primêre kondensors word dus blootgestel aan 'n hoë risiko vir die opbou van ongewenste nie-kondenseerbare gasse. Verder kan ‘n vermindering in deflegmator kapasiteit, weens onvoldoende werksverrigting van die vakuumpompe, dié probleem vererger. Enkel-ry-bundels vir primêre kondensors vermy ry-effekte en lei sodoende tot ʼn aansienlike vermindering in die aanvraag na deflegmator-werksverrigting. Die gebruik van sulke bundels in die deflegmator sou die vakuumpomplas ook meetbaar verminder. Uit die bevindinge van hierdie studie word dit aanbeveel dat enkel-ry bundels beskou word as die primêre opsie vir toekomstige lugverkoelde-kondensor aansoeke. ’n Konsep vir ’n hibriede-deflegmator (droog/nat) word ontleed. Die studie toon dat, deur hierdie konsep in die nat-modus te gebruik, ’n meetbare verbetering in deflegmator-werksverrigting gesien kan word, ten koste van net ʼn klein hoeveelheid waterverbruik. Die verbetering in verkoelingsvermoë van die deflegmator beteken ʼn toename van tot 30 % in die totale verkoelingsvermoë van die lugverkoelde-kondensor gedurende periodes wanneer hoë omgewingstemperature heersend is. Die voordeel van hierdie verbeterde verkoelingsvermoë op die werksuitset van die stoomturbine kan beduidend wees. Die konsep vir ’n hibriede-deflegmator bied dus 'n eenvoudige, koste-effektiewe en volhoubare oplossing vir warm atmosferiese periodes, wanneer die lugverkoelde-kondensor se verkoelingsvermoë afneem. Noukeurige ontwerp van die eerste en tweede fase bundelkonfigurasies in die hibriede-deflegmator is nodig om oorstroming in die eerste fase, tydens nat werking van die tweede fase, te verhoed. Verder veroorsaak die effens swakker werksverrigting, gedurende die bedryf van die hibriede-deflegmator in die droog-modus, ʼn verhoogde risiko vir die opbou van nie-kondenseerbare gasse in multi-ry primêre kondensors. Weereens sal enkel-ry-bundels in primêre kondensors hierdie probleem oplos.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/85731
This item appears in the following collections: