Modelling of non-Newtonian fluid flow through and over porous media with the inclusion of boundary effects

Cloete, Maret (2013-03)

Thesis (PhD)--Stellenbosch University, 2013.

Thesis

ENGLISH ABSTRACT: Different generalized Newtonian fluids (where the normal stresses were neglected) were considered in this study. Analytical expressions were derived for time independent, fully developed velocity profiles of Herschel-Bulkley fluids (including the simplifications thereof: Newtonian, power law and Bingham plastic fluids) and Casson fluids through open channel sections. Both flow through cylindrical pipes (Hagen-Poiseuille flow) and parallel plates (plane Poiseuille flow) were brought under consideration. Equations were derived for the wall shear stresses in terms of the average channel velocities. These expressions for plane Poiseuille flow were then utilized in the modelling of flow through homogeneous, isotropic porous media. Flow through parallel plates was extended and a possibility of a moving lower wall (plane Couette-Poiseuille flow) was included for Herschel-Bulkley fluids (and the simplifications thereof). The velocity of the wall was assumed to be opposite to the pressure gradient (thus in the streamwise direction) yielding three different possible flow scenarios. These equations were again revisited in the study on flow over porous structures. Averaging of the microscopic momentum transport equation was carried out by means of volume averaging over an REV (Representative Elementary Volume). Flow through parallel plates enclosing a homogeneous porous medium (assumed homogeneous up to the external boundary) was studied at the hand of Brinkman’s equation. It was as- sumed (also for non-Newtonian fluids) that the term dominating outside the external boundary layer area is directly proportional to the superficial velocity that is, since only the viscous flow regime was considered, referred to as the ‘Darcy’ velocity if the diffusive Brinkman term is completely neglected. For a shear thinning or shear thickening fluid, the excess superficial velocity term was included in the proportionality coefficient that is constant for a particular fluid traversing a particular porous medium subjected to a specific pressure gradient. For such fluids only the inverse functions could be solved. If the ‘Darcy’ velocity is not reached within the considered domain, Gauss’s hypergeo- metric function had to be utilized. For Newtonian and Bingham plastic fluids, direct solutions were obtained. The effect of the constant yield stress was embedded in the proportionality coefficient. For linear flow, the proportionality coefficient consists of both a Darcy and a Forch- heimer term applicable to the viscous and inertial flow regimes respectively. Secondary averaging for different types of porous media was accomplished by using an RUC (Representative Unit Cell) to estimate average interstitial properties. Only homoge- neous, isotropic media were considered. Expressions for the apparent permeability as well as the passability in the Forchheimer regime (also sometimes referred to as the non-Darcian permeability) were derived for the various fluid types. Finally fluid flow in a domain consisting of an open channel adjacent to an infinite porous domain is considered. The analytically derived velocity profiles for both plane Couette- Poiseuille flow and the Brinkman equation were matched by assuming continuity in the shear stress at the porosity jump between the two domains. An in-house code was developed to simulate such a composite domain numerically. The difference between the analytically assumed constant apparent permeability in a macro- scopic boundary layer region as opposed to a dependency of the varying superficial velocity was discussed. This code included the possibility to alter the construction of the domain and to simulate axisymmetrical flow in a cylinder.

AFRIKAANSE OPSOMMING: Verskeie veralgemeende Newtoniese vloeistowwe (waarvan die normaalspannings ignoreer- baar is) word in hierdie studie beskou. Analitiese uitdrukkings vir tyd-onafhanklike, ten volle ontwikkelde snelheidsprofiele vir Herschel-Bulkley vloeistowwe (wat die vereen- voudigde weergawes daarvan insluit: Newtoniese, magswet- en Bingham-plastiek vloei- stowwe), sowel as Casson vloeistowwe, is afgelei vir vloei deur ‘n oop kanaal. Beide vloei deur silindriese pype (Hagen-Poiseuille vloei) en parallelle plate (vlak-Poiseuille vloei) is oorweeg. Vergelykings vir die skuifspannings op ‘n wand in terme van die gemiddelde snelhede is afgelei. Hierdie uitdrukking wat vir vlak-Poiseuille vloei verkry is, is in die modellering van vloei deur homogene, isotropiese poreuse media ook gebruik. Vloei deur parallelle plate is uitgebrei en die moontlikheid van ‘n bewegende onderste wand (vlak-Couette-Poiseuille vloei) is ondersoek vir Herschel-Bulkley vloeistowwe (en die vereenvoudigings daarvan). Dit word aangeneem dat die snelheid van die wand in die teenoorgestelde rigting as die drukgradiënt georiënteer is (dus in die stroomgewyse rigting) wat dan tot drie verskillende moontlike vloeigevalle lei. Hierdie vergelykings is weer in die studie van vloei oor poreuse strukture gebruik. Die gemiddelde van die mikroskopiese momentum transportvergelyking is bereken oor die volume van ‘n REV (“Representative Elementary Volume”). Vloei deur parallelle plate wat ‘n homogene poreuse medium omsluit (waar die medium homogeen aanvaar word tot by die eksterne grens) is bestudeer aan die hand van Brinkman se vergelyking. Daar is aanvaar (ook vir nie-Newtoniese vloeistowwe) dat die dominante term buite die eksterne grenslaaggebied direk eweredig is aan die oppervlaksnelheid en, aangesien slegs vloei in die viskeuse gebied oorweeg word, daarna verwys word as die “Darcy”- snelheid, indien die diffusiewe Brinkman-term heeltemal weglaatbaar is. Vir ‘n span-ningsverdunnende of -verdikkende vloeistof, word die oortollige oppervlaksnelheidsterm ingesluit by die proporsionaliteitskoëffisiënt wat konstant is vir ‘n spesifieke vloeistof wat deur ‘n sekere poreuse medium, onderhewig aan ‘n spesifieke drukgradiënt, vloei. Vir sulke vloeistowwe kon slegs die inverse funksies opgelos word. As die “Darcy”- snelheid nie binne die betrokke gebied bereik word nie, is daar van Gauss se hipergeometriese funksie gebruik gemaak. Vir Newtoniese en Bingham-plastiek vloeistowwe is egter direkte oplossings verkry. Die effek van die konstante toegeespanning is ingebed in die proporsionaliteitskoëffisiënt. Vir lineêre vloei bestaan die proporsionaliteitskoëffisiënt uit beide ‘n Darcy- en ‘n Forch- heimer-term wat van toepassing is in die viskeuse- en traagheidsvloeigebiede onder- skeidelik. Sekondˆere gemiddeldes vir verskillende tipes poreuse media is verkry; deur gebruik te maak van ‘n RUC (“Representative Unit Cell”) kan interstisiële gemiddelde eienskappe geskat word. Slegs homogene, isotrope media is in oorweging gebring. Uit- drukkings vir die o¨enskynlike deurlaatbaarheid sowel as die deurdringbaarheid in die Forchheimer-gebied (ook soms na verwys as die nie-Darcy deurlaatbaarheid) is afgelei vir die verskillende vloeistoftipes. Ten slotte is vloeistofvloei in ‘n gebied wat bestaan uit ‘n oop kanaal aangrensend aan ‘n oneindige poreuse domein ondersoek. Die analities-afgeleide snelheidsprofiele vir beide vlak-Couette-Poiseuille vloei en die Brinkman-vergelyking is gekoppel deur ‘n kontinu¨ıteit in die skuifspanning by die poreuse-sprong tussen die twee gebiede te aanvaar. ‘n Interne numeriese kode is ontwikkel om so ‘n saamgestelde domein numeries te simuleer. Die verskil tussen die analities konstant-aanvaarde deurlaatbaarheid in ‘n makroskopiese grenslaagstreek, eerder as ‘n afhanklikheid met die veranderende opper- vlaksnelheid, is bespreek. Hierdie kode sluit ook die moontlikheid in om die domein te herkonstrueer, asook om die simulasie van aksiaal-simmetriese vloei in ‘n silinder te ondersoek.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/80240
This item appears in the following collections: