The impact of voluntary exercise on relative telomere length in a rat model of developmental stress

Botha, Martmari ; Grace, Laurian ; Bugarith, Kishor ; Russell, Vivienne A ; Kidd, Martin ; Seedat, Soraya ; Hemmings, Sian M.J. (2012-12)

The original publication is available at http://www.biomedcentral.com/bmcresnotes

Publication of this article was funded by the Stellenbosch University Open Access Fund.

Article

Background Exposure to early adverse events can result in the development of later psychopathology, and is often associated with cognitive impairment. This may be due to accelerated cell aging, which can be catalogued by attritioned telomeres. Exercise enhances neurogenesis and has been proposed to buffer the effect of psychological stress on telomere length. This study aimed to investigate the impact of early developmental stress and voluntary exercise on telomere length in the ventral hippocampus (VH) and prefrontal cortex (PFC) of the rat. Forty-five male Sprague–Dawley rats were categorised into four groups: maternally separated runners (MSR), maternally separated non-runners (MSnR), non-maternally separated runners (nMSR) and non-maternally separated non-runners (nMSnR). Behavioural analyses were conducted to assess anxiety-like behaviour and memory performance in the rats, after which relative telomere length was measured using qPCR. Results Maternally separated (MS) rats exhibited no significant differences in either anxiety levels or memory performance on the elevated-plus maze and the open field compared to non-maternally separated rats at 49 days of age. Exercised rats displayed increased levels of anxiety on the day that they were removed from the cages with attached running wheels, as well as improved spatial learning and temporal recognition memory compared to non-exercised rats. Exploratory post-hoc analyses revealed that maternally separated non-exercised rats exhibited significantly longer telomere length in the VH compared to those who were not maternally separated; however, exercise appeared to cancel this effect since there was no difference in VH telomere length between maternally separated and non-maternally separated runners. Conclusions The increased telomere length in the VH of maternally separated non-exercised rats may be indicative of reduced cellular proliferation, which could, in turn, indicate hippocampal dysfunction. This effect on telomere length was not observed in exercised rats, indicating that voluntary exercise may buffer against the progressive changes in telomere length caused by alterations in maternal care early in life. In future, larger sample sizes will be needed to validate results obtained in the present study and obtain a more accurate representation of the effect that psychological stress and voluntary exercise have on telomere length.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/79322
This item appears in the following collections: