Optimization of the conversion of lignocellulosic agricultural by-products to bioethanol using different enzyme cocktails and recombinant yeast strains

Date
2011-03
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: The need to mitigate the twin crises of peak oil and climate change has driven a headlong rush to biofuels. This study was aimed at the development of a process to efficiently convert steam explosion pretreated (STEX) sugarcane bagasse into ethanol by using combinations of commercial enzyme cocktails and recombinant Saccharomyces cerevisiae strains. Though enzymatic saccharification is promising in obtaining sugars from lignocellulosics, the low enzymatic accessibility of the cellulose and hemicellulose is a key impediment thus necessitating development of an effective pretreatment scheme and optimized enzyme mixtures with essential accessory activities. In this context, the effect of uncatalysed and SO2 catalysed STEX pretreatment of sugarcane bagasse on the composition of pretreated material, digestibility of the water insoluble solids (WIS) fraction and overall sugar recovery was investigated. STEX pretreatment with water impregnation was found to result in a higher glucose recovery (28.1 g/ 100 bagasse) and produced WIS with a higher enzymatic digestibility, thus was used in the optimization of saccharification and fermentation. Response surface methodology (RSM) based on the 33 factorial design was used to optimize the composition of the saccharolytic enzyme mixture so as to maximize glucose and xylose production from steam exploded bagasse. It was established that a combination of 20 FPU cellulase/ g WIS and 30 IU -glucosidases/ g WIS produced the highest desirability for glucose yield. Subsequently the optimal enzyme mixture was used to supplement enzyme activities of recombinant yeast strains co-expressing several cellulases and xylanases in simultaneous saccharification and fermentations SSFs. In the SSFs, ethanol yield was found to be inversely proportional to substrate concentration with the lowest ethanol yield of 70% being achieved in the SSF at a WIS concentration of 10% (w/v). The ultimate process would however be a one-step “consolidated” bio-processing (CBP) of lignocellulose to ethanol, where hydrolysis and fermentation of polysaccharides would be mediated by a single microorganism or microbial consortium without added saccharolytic enzymes. The cellulolytic yeast strains were able to autonomously multiply on sugarcane bagasse and concomitantly produce ethanol, though at very low titres (0.4 g/L). This study therefore confirms that saccharolytic enzymes exhibit synergism and that bagasse is a potential substrate for bioethanol production. Furthermore the concept of CBP was proven to be feasible.
AFRIKAANSE OPSOMMING: Die behoefte om die twee krisisse van piek-olie en klimaatsverandering te versag, het veroorsaak dat mense na biobrandstof as alternatiewe energiebron begin kyk het. Hierdie studie is gemik op die ontwikkeling van 'n proses om stoomontplofde voorafbehandelde (STEX) suikerriet bagasse doeltreffend te omskep in etanol deur die gebruik van kombinasies van kommersiële ensiem mengsels en rekombinante Saccharomyces cerevisiae stamme. Alhoewel ensiematiese versuikering belowend is vir die verkryging van suikers vanaf lignosellulose, skep die lae ensiematiese toeganklikheid van die sellulose en hemisellulose 'n hindernis en dus is die ontwikkeling van' n effektiewe behandelingskema en optimiseerde ensiemmengsels met essensiële bykomstige aktiwiteite noodsaaklik. In hierdie konteks, was die effek van ongekataliseerde en SO2 gekataliseerde stoomontploffing voorafbehandeling van suikerriet bagasse op die samestelling van voorafbehandelde materiaal, die verteerbaarheid van die (WIS) breuk van onoplosbare vastestowwe in water (WIS), en die algehele suikerherstel ondersoek. Daar was bevind dat stoomontploffing behandeling (STEX) met water versadiging lei tot 'n hoër suikerherstel (21.8 g/ 100g bagasse) en dit het WIS met ‘n hoër ensimatiese verteerbaarheid vervaardig en was dus gebruik in die optimalisering van versuikering en fermentasie. Reaksie oppervlak metodologie (RSM), gebasseer op die 33 faktoriële ontwerp, was gebruik om die samestelling van die ‘saccharolytic’ ensiemmengsel te optimaliseer om sodoende die maksimering van glukose en ‘xylose’ produksie van stoomontplofde bagasse te optimaliseer. Daar was bevestig dat ‘n kombinasie van 20 FPU sellulase/ g WIS en 30 IU ‘ -glucosidases/ g’ WIS die hoogste wenslikheid vir glukose-opbrengs produseer het. Daarna was die optimale ensiemmengsel gebruik om ensiemaktiwiteit van rekombinante gisstamme aan te vul, wat gelei het tot die medeuitdrukking van verskillende ‘cellulases’ en ‘xylanases’ in gelyktydige versuikering en fermentasie SSFs. In die SSFs was daar bevind dat die etanol-produksie omgekeerd proporsioneel is tot substraat konsentrasie, met die laagste etanolopbrengs van 70% wat bereik was in die SSF by ‘n WIS konsentrasie van 10% (w/v). Die uiteindelike proses sal egter 'n eenmalige "gekonsolideerde" bioprosessering (CBP) van lignosellulose na etanol behels, waar die hidrolise en fermentasie van polisakkariede deur' n enkele mikroorganisme of mikrobiese konsortium sonder bygevoegde ‘saccharolytic’ ensieme bemiddel sal word. Die ‘cellulolytic’ gisstamme was in staat om vanself te vermeerder op suikerriet bagasse en gelyktydig alkohol te produseer, al was dit by baie lae titres (0.4 g/L). Hierdie studie bevestig dus dat ‘saccharolytic’ ensieme sinergisme vertoon en dat bagasse 'n potensiële substraat is vir bio-etanol produksie. Daar was ook onder meer bewys dat die konsep van CBP uitvoerbaar is.
Description
Thesis (MSc)--Stellenbosch University, 2011.
Keywords
Bioethanol, Steam explosion pretreatment, Consolidated bioprocessing, Theses -- Microbiology, Dissertations -- Microbiology
Citation