Cubature methods and applications to option pricing

Matchie, Lydienne (Stellenbosch : University of Stellenbosch, 2010-12)

Thesis (MSc (Mathematics))--University of Stellenbosch, 2010.

Thesis

ENGLISH ABSTRACT: In this thesis, higher order numerical methods for weak approximation of solutions of stochastic differential equations (SDEs) are presented. They are motivated by option pricing problems in finance where the price of a given option can be written as the expectation of a functional of a diffusion process. Numerical methods of order at most one have been the most used so far and higher order methods have been difficult to perform because of the unknown density of iterated integrals of the d-dimensional Brownian motion present in the stochastic Taylor expansion. In 2001, Kusuoka constructed a higher order approximation scheme based on Malliavin calculus. The iterated stochastic integrals are replaced by a family of finitely-valued random variables whose moments up to a certain fixed order are equivalent to moments of iterated Stratonovich integrals of Brownian motion. This method has been shown to outperform the traditional Euler-Maruyama method. In 2004, this method was refined by Lyons and Victoir into Cubature on Wiener space. Lyons and Victoir extended the classical cubature method for approximating integrals in finite dimension to approximating integrals in infinite dimensional Wiener space. Since then, many authors have intensively applied these ideas and the topic is today an active domain of research. Our work is essentially based on the recently developed higher order schemes based on ideas of the Kusuoka approximation and Lyons-Victoir “Cubature on Wiener space” and mostly applied to option pricing. These are the Ninomiya-Victoir (N-V) and Ninomiya- Ninomiya (N-N) approximation schemes. It should be stressed here that many other applications of these schemes have been developed among which is the Alfonsi scheme for the CIR process and the decomposition method presented by Kohatsu and Tanaka for jump driven SDEs. After sketching the main ideas of numerical approximation methods in Chapter 1 , we start Chapter 2 by setting up some essential terminologies and definitions. A discussion on the stochastic Taylor expansion based on iterated Stratonovich integrals is presented, we close this chapter by illustrating this expansion with the Euler-Maruyama approximation scheme. Chapter 3 contains the main ideas of Kusuoka approximation scheme, we concentrate on the implementation of the algorithm. This scheme is applied to the pricing of an Asian call option and numerical results are presented. We start Chapter 4 by taking a look at the classical cubature formulas after which we propose in a simple way the general ideas of “Cubature on Wiener space” also known as the Lyons-Victoir approximation scheme. This is an extension of the classical cubature method. The aim of this scheme is to construct cubature formulas for approximating integrals defined on Wiener space and consequently, to develop higher order numerical schemes. It is based on the stochastic Stratonovich expansion and can be viewed as an extension of the Kusuoka scheme. Applying the ideas of the Kusuoka and Lyons-Victoir approximation schemes, Ninomiya- Victoir and Ninomiya-Ninomiya developed new numerical schemes of order 2, where they transformed the problem of solving SDE into a problem of solving ordinary differential equations (ODEs). In Chapter 5 , we begin by a general presentation of the N-V algorithm. We then apply this algorithm to the pricing of an Asian call option and we also consider the optimal portfolio strategies problem introduced by Fukaya. The implementation and numerical simulation of the algorithm for these problems are performed. We find that the N-V algorithm performs significantly faster than the traditional Euler-Maruyama method. Finally, the N-N approximation method is introduced. The idea behind this scheme is to construct an ODE-valued random variable whose average approximates the solution of a given SDE. The Runge-Kutta method for ODEs is then applied to the ODE drawn from the random variable and a linear operator is constructed. We derive the general expression for the constructed operator and apply the algorithm to the pricing of an Asian call option under the Heston volatility model.

AFRIKAANSE OPSOMMING: In hierdie proefskrif, word ’n hoërorde numeriese metode vir die swak benadering van oplossings tot stogastiese differensiaalvergelykings (SDV) aangebied. Die motivering vir hierdie werk word gegee deur ’n probleem in finansies, naamlik om opsiepryse vas te stel, waar die prys van ’n gegewe opsie beskryf kan word as die verwagte waarde van ’n funksionaal van ’n diffusie proses. Numeriese metodes van orde, op die meeste een, is tot dus ver in algemene gebruik. Dit is moelik om hoërorde metodes toe te pas as gevolg van die onbekende digtheid van herhaalde integrale van d-dimensionele Brown-beweging teenwoordig in die stogastiese Taylor ontwikkeling. In 2001 het Kusuoka ’n hoërorde benaderings skema gekonstrueer wat gebaseer is op Malliavin calculus. Die herhaalde stogastiese integrale word vervang deur ’n familie van stogastiese veranderlikes met eindige waardes, wat se momente tot ’n sekere vaste orde bestaan. Dit is al gedemonstreer dat hierdie metode die tradisionele Euler-Maruyama metode oortref. In 2004 is hierdie metode verfyn deur Lyons en Victoir na volumeberekening op Wiener ruimtes. Lyons en Victoir het uitgebrei op die klassieke volumeberekening metode om integrale te benader in eindige dimensie na die benadering van integrale in oneindige dimensionele Wiener ruimte. Sedertdien het menige outeurs dié idees intensief toegepas en is die onderwerp vandag ’n aktiewe navorsings gebied. Ons werk is hoofsaaklik gebaseer op die onlangse ontwikkelling van hoërorde skemas, wat op hul beurt gebaseer is op die idees van Kusuoka benadering en Lyons-Victoir "Volumeberekening op Wiener ruimte". Die werk word veral toegepas op die prysvastelling van opsies, naamlik Ninomiya-Victoir en Ninomiya-Ninomiya benaderings skemas. Dit moet hier beklemtoon word dat baie ander toepassings van hierdie skemas al ontwikkel is, onder meer die Alfonsi skema vir die CIR proses en die ontbinding metode wat voorgestel is deur Kohatsu en Tanaka vir sprong aangedrewe SDVs. Na ’n skets van die hoof idees agter metodes van numeriese benadering in Hoofstuk 1 , begin Hoofstuk 2 met die neersetting van noodsaaklike terminologie en definisies. ’n Diskussie oor die stogastiese Taylor ontwikkeling, gebaseer op herhaalde Stratonovich integrale word uiteengeset, waarna die hoofstuk afsluit met ’n illustrasie van dié ontwikkeling met die Euler-Maruyama benaderings skema. Hoofstuk 3 bevat die hoofgedagtes agter die Kusuoka benaderings skema, waar daar ook op die implementering van die algoritme gekonsentreer word. Hierdie skema is van toepassing op die prysvastelling van ’n Asiatiese call-opsie, numeriese resultate word ook aangebied. Ons begin Hoofstuk 4 deur te kyk na klassieke volumeberekenings formules waarna ons op ’n eenvoudige wyse die algemene idees van "Volumeberekening op Wiener ruimtes", ook bekend as die Lyons-Victoir benaderings skema, as ’n uitbreiding van die klassieke volumeberekening metode gebruik. Die doel van hierdie skema is om volumeberekening formules op te stel vir benaderings integrale wat gedefinieer is op Wiener ruimtes en gevolglik, hoërorde numeriese skemas te ontwikkel. Dit is gebaseer op die stogastiese Stratonovich ontwikkeling en kan beskou word as ’n ontwikkeling van die Kusuoka skema. Deur Kusuoka en Lyon-Victoir se idees oor benaderings skemas toe te pas, het Ninomiya-Victoir en Ninomiya- Ninomiya nuwe numeriese skemas van orde 2 ontwikkel, waar hulle die probleem omgeskakel het van een waar SDVs opgelos moet word, na een waar gewone differensiaalvergelykings (GDV) opgelos moet word. Hierdie twee skemas word in Hoofstuk 5 uiteengeset. Alhoewel die benaderings soortgelyk is, is daar ’n beduidende verskil in die algoritmes self. Hierdie hoofstuk begin met ’n algemene uiteensetting van die Ninomiya-Victoir algoritme waar ’n arbitrêre vaste tyd horison, T, gebruik word. Dié word toegepas op opsieprysvastelling en optimale portefeulje strategie probleme. Verder word numeriese simulasies uitgevoer, die prestasie van die Ninomiya-Victoir algoritme was bestudeer en vergelyk met die Euler-Maruyama metode. Ons maak die opmerking dat die Ninomiya-Victoir algoritme aansienlik vinniger is. Die belangrikste resultaat van die Ninomiya-Ninomiya benaderings skema word ook voorgestel. Deur die idee van ’n Lie algebra te gebruik, het Ninomiya en Ninomiya ’n stogastiese veranderlike met GDV-waardes gekonstrueer wat se gemiddeld die oplossing van ’n gegewe SDV benader. Die Runge-Kutta metode vir GDVs word dan toegepas op die GDV wat getrek is uit die stogastiese veranderlike en ’n lineêre operator gekonstrueer. ’n Veralgemeende uitdrukking vir die gekonstrueerde operator is afgelei en die algoritme is toegepas op die prysvasstelling van ’n Asiatiese opsie onder die Heston onbestendigheids model.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/5374
This item appears in the following collections: