Hydrodynamic permeability of staggered and non-staggered regular arrays of squares

Lloyd, Cindy (2003-12)

Thesis (MScEng)--Stellenbosch University, 2003.

Thesis

ENGLISH ABSTRACT: This work entails an analysis of two-dimensional Newtonian flow through a prismatic array of squares. Both in-line and staggered configurations are investigated, as well as the very low velocity Darcy regime, where Stokes' flow predominates, and the Forchheimer regime, where interstitial inertial effects such as recirculation are present. As point of departure two recently developed pore-scale models are discussed and their results compared to Stokes' flow computational analysis for flow through regular arrays of rectangles. The commercial CFX code is also used to analyse the problem and to determine the accuracy of the assumptions used for the development of the pore-scale models. Finally an improvement is suggested to the RRUC model towards more accurate prediction of permeabilities, especially for porosities below 75%, and whereby its quantitative predictive capability is thus enhanced considerably.

AFRIKAANSE OPSOMMING: Hierdie werk behels 'n analise van twee-dimensionele vloei deur 'n prismatiese matriks van reghoeke. Beide inlyn en verspringde konfigurasies word ondersoek sowel as Darcy-gebied van baie lae vloeisnelheid, waar Stokes se Wet oorheersend is, en die Forchheimer-gebied waar inersiële effekte soos interne hersirkulasie teenwoordig is. As uitgangspunt word twee modelle bespreek wat onlangs ontwikkel is en hulle resultate word vergelyk met numeriese voorspellings vir Stokes vloei deur 'n geordende matriks van reghoeke. Die kommersiële numeriese pakket CFX is ook gebruik om die probleem te analiseer en om die toepaslikheid van aannames van die onderskeie modelle te bepaal. 'n Verbetering tot die RRUC model word voorgestel wat lei tot meer akkurate voorspelling van permeabiliteite, veral vir porositeite laer as 75%, en waardeur die kwantitatiewe voorspellings-vermoë van die modelle aansienlik verbeter word.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/53453
This item appears in the following collections: