The use of ion-exchange resins for the recovery of valuable species from slurries of sparingly soluble solids

De Villiers, Pieter Gabriel Retief (2002-12)

Thesis (PhD)--University of Stellenbosch, 2002.

Thesis

ENGLISH ABSTRACT: The availability of vast deposits of high-grade ore bodies are rapidly becoming something of the past in the modern mining and metallurgical scenario. Apart from the lower grade content of these ore bodies, complex mineralogy are an even greater obstacle in the recovery of valuable metal species. The development of new technology to deal with these type of ore bodies is therefore critical and worth investigating, as the world's easily exploitable high grade ore deposits are decreasing. Valuable species can be recovered from sparingly soluble solids, which slightly dissociate to give traces of the valuable ions in solution, with the use of ion-exchange resins in a slurry mixture. A dissociation equilibrium exists between the dissolved ions in solution and the solid ore body. Jf the dissolved ions are removed from the solution by ion-exchange, the solid / liquid dissociation equilibrium is continually displaced. According to Le Chatelier's principle further dissolution of the sparingly soluble solid is required to restore the equilibrium concentration of the valuable species in solution. It is possible to recover valuable metal species from metal precipitates, such as metal sulphides, by contacting a slurry of the precipitate with a suitable ion-exchange resin. The resulting ion exchange reaction between the valuable metal species and counter ions creates electrolyte solutions that may facilitate the further dissolution of the metal precipitate. These counter ion electrolyte solutions may easily become significantly concentrated. This occurs in the event of a Resin-in-Leach (RIL) mixture that results in a continuous ion-exchange reaction taking place due to the continually changing electrolyte composition of the mixture, which significantly changes the activities and hence the solubility of the valuable metal species in solution. Complete dissolution and liberation of the metal precipitate can often be achieved provided that a sufficient amount of a suitable high capacity ion-exchange resin is used in a properly engineered Resin-in- Leach (RIL) circuit. The simultaneous dissolution and adsorption of various base metal precipitates were tested. Various interactions that take place in the slurry at molecular level as well as the effects of various variables on the "adsorption by dissolution process" are discussed through the development of fundamental thermodynamic models. These thermodynamic mathematical models are developed for the three phase system that exists in a Resin-in- Leach mixture, i.e. the solid ore body, the electrolyte solution and the ion-exchange resin, and can be used for possible other applications such as the recovery of rare earths from low grade ores in the minerals processing industry. A typical example of an industrial process for the recovery of rare earth species is the percolation leaching of rare earths from low-grade kaolinitic ores, which continually shifts the solid / liquid dissociation equilibrium condition. The rare earth content of these ores is usually between 0.05%and 0.3 %, which is very low by any modern industrial extraction and refining standards.

AFRIKAANSE OPSOMMING: Die beskikbaarheid van ryk mineraal ertsneerslae is spoedig besig om iets van die verlede te word in die huidige mineraalontginning en metallurgiese veredelings industrie. Afgesien van die lae graad van die huidige mineraal ertsneerslae, blyk die komplekse mineralogiese samestelling van hierdie neerslae In veel groter struikelblok te wees in die herwinning en veredeling van die edelmetale teenwoordig in hierdie ertse. Die ontwikkeling van nuwe veredelings en ekstratiewe tegnologie vir die herwinning van edel metale, vanuit hierdie lae graad mineraal ertsneerslae, word dus benodig wat verdere navorsing in hierdie gebied regverdig. Dit is wel moontlik om metaal spesies afkomstig van ertse met 'n baie lae oplosbaarheid in waterige oplossings te herwin met ioon-uitruilings harse vanweë die feit dat die metaal spesies wel teen baie lae konsentrasies in die waterige oplossings teenwoordig is. Die metaal spesies los op in die waterige oplossings volgens hulle karakteristieke oplossings termodinamika. Indien die opgeloste metaal spesies vanuit die waterige oplossing verwyder word, sal die vaste stof / vloeistof ewewigs balans weer herstel word deurdat die vaste stof verder saloplos as gevolg van Le Chatelier se beginsel. Dit is dus moontlik om metaalagtige spesies, soos metaal sulfiedes, te herwin deur 'n waterige oplossing wat die metaal erts bevat in kontak te bring met 'n ioon-uitruilings hars. Die daaropvolgende ioon-uitruilings reaksie tussen die metaalagtige spesies en die spesies teenswoordig op die ioon-uitruilingshars het tot gevolg dat die elektrolitiese samestelling van die waterige oplossing verander. Dit is die gevolg van die migrasie van spesies aanvanklik teenswoordig op die hars wat in die waterige fase eindig. Die veranderende samestelling van die waterige oplossing mag verder tot gevolg hê dat die oplosbaarheid van die metaalagtige spesie verder verhoog mag word. Die gevolg van bogenoemde reaksies is dat die waterige oplossing ionies sterk gekonsentreerd kan word soos meer en meer spesies aanvanklik teenswoordig op die hars migreer na die oplossing. Die ioniese verandering van die waterige oplossing van 'n suiwer waterige fase tot 'n ionies sterk gekonsentreerde oplossing vind plaas tydens die oplos van erste in 'n hars-inpulp (HIP) oplossing. Die nuwe ioniese aktiwiteit in die oplossing kan die oplosbaarheid van die vaste stof drasties verander. Die volledige oplossing van 'n bepaalde kwantiteit van die vaste stof kan bereik word deur die genoegsame toevoeging van 'n geskikte hars tot die waterige oplossing wat die vaste stofbevat. Die gelyktydige oplossing en absorpsie van die metaalagtige vastestowwe vanuit waterige oplossings met behulp van ioon-uitruilings harse is eksperimenteel getoets vir die doeleindes van hierdie werkstuk. Verskeie interaksies wat op molekulêre vlak in die pulp plaasvind asook die adsorpsie proses van die spesies vanuit die waterige oplossing op die harse word bespreek en gemodelleer. Wiskundige modelle wat die termodinamika van die verskillende fases wiskundig verteenwoordig is ontwikkel vanaf bestaande termodinamiese beginsels. Die drie verskillende fases wat in ag geneem is, is die waterige fase met opgeloste metaal spesies, die vaste stof fase wat as die erts in bostaande paragrawe beskryf is en die ioon-uitruilings fase wat 'n komplekse vastestof en water fase gekombineerd is. Die doel van die werkstuk is om die basis te skep vir die ontwikkeling van modelle wat gebruik kan word om die herwinning van skaars-aarde mertale vanuit lae oplosbare erstse te modelleer en beskryf. 'n Tipiese industriële voorbeeld is die herwinning van skaars-aarde metale van lae-graadse kalkagtige erste deur gebruik te maak van perkolerende logings reaksies wat geduring die vastestof / vloeistof ewewig versteur. Die konsentrasie van die skaars-aarde metale in hierde erts gesteentes kan wissel vanaf so laag as 0.05% tot 0.3% per massa. Hierdie konsentrasies is uiters laag gesien vanuit enige industriële herwinnings proses oogpunt.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/53181
This item appears in the following collections: