Hidden Markov models for on-line signature verification

Date
2002-12
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: The science of signature verification is concerned with identifying individuals by their handwritten signatures. It is assumed that the signature as such is a unique feature amongst individuals and the creation thereof requires a substantial amount of hidden information which makes it difficult for another individual to reproduce the signature. Modern technology has produced devices which are able to capture information about the signing process beyond what is visible to the naked eye. A dynamic signature verification system is concerned with utilizing not only visible, i.e. shape related information but also invisible, hidden dynamical characteristics of signatures. These signature characteristics need to be subjected to analysis and modelling in order to automate use of signatures as an identification metric. We investigate the applicability of hidden Markov models to the problem of modelling signature characteristics and test their ability to distinguish between authentic signatures and forgeries.
AFRIKAANSE OPSOMMING: Die wetenskap van handtekeningverifikasie is gemoeid met die identifisering van individue deur gebruik te maak van hulle persoonlike handtekening. Dit berus op die aanname dat 'n handtekening as sulks uniek is tot elke individu en die generering daarvan 'n genoeg mate van verskuilde inligting bevat om die duplisering daarvan moeilik te maak vir 'n ander individu. Moderne tegnologie het toestelle tevoorskyn gebring wat die opname van eienskappe van die handtekeningproses buite die bestek van visuele waarneming moontlik maak. Dinamiese handtekeningverifikasie is gemoeid met die gebruik nie alleen van die sigbare manefestering van 'n handtekening nie, maar ook van die verskuilde dinamiese inligting daarvan om dit sodoende 'n lewensvatbare tegniek vir die identifikasie van individue te maak. Hierdie sigbare en onsigbare eienskappe moet aan analise en modellering onderwerp word in die proses van outomatisering van persoonidentifikasie deur handtekeninge. Ons ondersoek die toepasbaarheid van verskuilde Markov-modelle tot die modelleringsprobleem van handtekeningkarakteristieke en toets die vermoë daarvan om te onderskei tussen egte en vervalste handtekeninge.
Description
Thesis (MSc)--University of Stellenbosch, 2002.
Keywords
Pattern recognition systems, Markov processes, Dissertations -- Computer science, Dynamic signature verification, Theses -- Computer science
Citation