The separation of phenolic compounds from neutral oils and nitrogen bases

Venter, Denise (Denise Louisette) (2001-04)

Dissertation (PhD(Eng))--University of Stellenbosch, 2001.

Thesis

ENGLISH ABSTRACT: Coal pyrolysis liquors are a major source of phenolic compounds. The separation of the phenolic compounds from the neutral oils and nitrogen bases also present in the pyrolysis liquors is difficult due to low relative volatilities and the formation of azeotropes. The desired phenolic recovery and phenolic product purity of 99.5 % can therefore not be achieved by means of conventional separation processes. Alternative processes such as liquid-liquid extraction with various low-boiling solvents, mixtures of high-boiling solvents and extractive distillation have been investigated. Disadvantages of these processes include the high solvent ratios required, low recovery of the higher substituted phenolic compounds, inability to treat a wide-boiling feedstock in one process step and complex post-purification of the phenolic product. A solvent system consisting of a selective solvent, water as a co-solvent, and hexane as a countersolvent, is proposed. An industrial heavy naphtha stream was analysed and the most prevalent phenolic compounds, neutral oils and nitrogen bases identified. Three synthetic feed streams were compiled to represent the industrial stream, namely: 1. phenol + benzonitrile + aniline + mesitylene + 5-et-2-me-pyridine 2. m-cresol + o-tolunitrile + o-toluidine + pseudocumene + undecane + indene 3. 2,4-xylenol + 3,5-xylenol + 3,4-xylenol + indane + dodecane + naphthalene The stream containing phenol was used as a basis for solvent selection, with emphasis on the separation of phenol from benzonitrile. A variety of molecules containing hydroxyl and ether functional groups were identified as potential solvents by means of computer-aided molecular design using a genetic algorithm. Of the commercially available solvents tested on batch extraction scale, triethylene glycol achieved the highest phenol-benzonitrile, phenol-aniline and phenol-5-et-2-me-pyridine separation factors as well as the highest phenol recovery. It was concluded from the solvent selection process that effective solvents for the problem under investigation were those containing hydroxyl groups positioned on the molecule backbone in such a way as to facilitate hydrogen bonding with more than one phenolic molecule at a time. Two commercially unavailable solvents, 1,3-(ethoxy-2- hydroxy)-propane-2-01 and 1,3-(diethoxy-4-hydroxy)-propane-2-01 were therefore synthesised from ethylene glycol and diethylene glycol respectively. The molecular structures of these two solvents are analogous to that of triethylene glycol, and contain an additional hydroxyl group. The performance of the synthesised solvents was evaluated and compared to that of triethylene glycol on the basis of m-cresol-otolunitrile, 2,4-xylenol - o-tolunitrile, and 2,4-xylenol - o-toluidine separation factors and phenolic recoveries achieved by means of batch extraction tests. 1,3-(Diethoxy-4- hydroxy)-propane-2-01 yielded higher phenolic recoveries, but lower separation factors than did triethylene glycol. Triethylene glycol was therefore selected for further process development as it is commercially available. A series of batch extractions were carried out on each of the synthetic feed streams using the proposed solvent system. For phenol and m-cresol, recoveries in excess of 99% were obtained in a single stage. Recoveries in excess of 98% were obtained for the xylenol isomers. It was found that the recoveries of the xylenol isomers were more sensitive to changes in the solvent ratios. The separation of phenolic compounds from paraffins, naphthalene, indene, indane and the alkyl-substituted benzenes was trivial using the proposed solvent system. Highly satisfactory separation of the phenolic compounds from pyridines and aromatic nitriles was achieved. The separation of phenol from aniline, although satisfactory, was not as good. The optimum solvent to feed, water to solvent and hexane to feed ratios were identified as being 3.0, 5.0 and 0.25 respectively. Binary interaction parameters for the NRTL equation were obtained by regression of the equilibrium data from the batch extraction tests. The NRTL model fitted the equilibrium data satisfactorily. The proposed solvent system was tested on pilot plant scale. The performance of the extraction column was optimised using a synthetic feed stream consisting of m-cresol, p-cresol, aniline and o-tolunitrile. The optimum solvent ratios and operating parameters were then implemented in further tests on an industrial heavy naphtha stream. A phenolic product purity of 99.75% was achieved for this stream. The corresponding phenolic recovery was in excess of 91 %. The proposed separation process, including solvent recovery was simulated using the NRTL model with the experimentally determined interaction parameters. A single stream consisting of all the components used in the batch extraction tests was specified as the feed stream to the simulated process. A final simulated phenolic product purity of 99.5% and recovery in excess of 94% was obtained after solvent recovery. The optimum solvent to feed, hexane to feed and water to solvent ratios were determined as being 3.0, 5.0 and 0.25 in both the pilot plant tests and the simulated extraction process. It can be concluded that the proposed separation process is successful in recovering high purity phenolic compounds from tar liquors. Further development of the process has commenced in industry.

AFRIKAANSE OPSOMMING: Die pirolise van steenkool is 'n belangrike bron van fenoliese verbindings. Die skeiding van die fenoliese komponente vanuit die neutrale olies ook teenwoordig in die pirolise mengsel word bemoeilik deur lae relatiewe vlugtighede en die vorming van aseotrope. Dit is dus nie moontlik om die gewenste hoë fenoliese herwinning en fenoliese produk suiwerheid van 99.5% d.m.v. konvensionele distilleerprosesse te behaal nie. Alternatiewe prosesse soos ekstraktiewe distillasie en vloeistof-vloeistof ekstraksie met verskeie laagkokende oplosmiddels en mengsels van hoogkokende oplosmiddels is al ondersoek. Die hoë oplosmiddel verhoudings wat benodig word, lae herwinning van die hoërgesubstitueerde fenoliese verbindings, onvermoë om in een prosesstap 'n prosesstroom met In wye kookgebied te behandel en die ingewikkelde suiwering van die fenoliese produk tel onder die nadele van hierdie prosesse. 'n Oplosmiddelsisteem wat In selektiewe oplosmiddel, water as polêre oplosmiddel en heksaan as teenoplosmiddel bevat is as 'n alternatiewe proses voorgestel. 'n Industriële swaar nafta prosesstroom is ge-analiseer en die fenoliese verbindings, neutrale olies en stikstofbasisse met die hoogste konsentrasies daarin geïdentifiseer. Drie sintetiese strome is op grond van hierdie analise saamgestelom die industriële stroom te verteenwoordig: 1. fenol + benzonitriel + anilien + mesitileen + 5-et-2-me-piridien 2. m-kresol + o-tolunitriel +o-toluïdien + pseudokumeen + undekaan + indeen 3. 2,4-xilenol + 3,5-xilenol + 3,4-xilenol + indaan + dodekaan + naftaleen Die fenolbevattende stroom is as basis vir oplosmiddelkeuring gebruik, met die klem op die skeiding van fenol vanuit benzonitriel. Verskeie molekules wat hidroksie- en eter funksionele groepe bevat is as potensiële oplosmiddels uitgeken d.m.v. rekenaargesteunde molekulêre ontwerp met In genetiese algoritme. Hierdie oplosmiddels is d.m.v. enkellading ekstraksie toetse geëvalueer. Die kommersieel beskikbare oplosmiddel wat die hoogste fenol-benzonitriel, fenol-anilien en fenol-5-et-2-me-piridien skeidingsfaktore, sowel as die hoogste fenol herwinning op enkellading ekstraksie toetsvlak gelewer het, was triëtileenglikol. Vanuit die proses vir die keuse van 'n oplosmiddel was dit duidelik dat, vir hierdie skeidingsprobleem, die mees effektiewe oplosmiddels dié is met hidroksiel groepe wat so geposisioneer is in die oplosmiddel molekuul dat dit waterstofbindings kan vorm met meer as een fenoliese molekuul. Twee oplosmiddels wat nie kommersiëel beskikbaar is nie, 1,3-(etoksie-2-hidroksie)-propaan-2-01 en 1,3-(diëtoksie-4-hidroksie)-propaan-2- ol, is gesintetiseer vanuit etileenglikol en diëtileenglikol onderskeidelik. Die molekulêre strukture van hierdie twee oplosmiddels is analoog aan dié van triëtileenglikol en bevat 'n addisionele hidroksielgroep. Die effektiwiteit van die gesintetiseerde oplosmiddels is geëvalueer en met dié van triëtileenglikol vergelyk op grond van rn-kresol-o-tolunltriel, 2,4-xilenol - o-tolunitriel en 2,4-xilenol - o-toluïdien skeidingsfaktore en fenoliese herwinning behaal d.m.v. enkellading ekstraksie toetse. Hoër fenoliese herwinning en laer skeidingsfaktore is behaal met 1,3-(diëtoksie-4-hidroksie)-propaan-2-01as met triëtileenglikol. Triëtileenglikol is dus gekies vir verdere prosesontwikkeling aangesien dit kommersiëel beskikbaar is. Enkellading ekstraksie toetse is op elk van die sintetiese voerstrome uitgevoer met die voorgestelde oplosmiddelsisteem. Fenol- en m-kresol herwinning van meer as 99% en xilenol herwinning van meer as 98% is behaal. Die skeiding van fenoliese verbindings vanuit paraffiene, naftaleen, indeen, indaan en die alkielgesubstitueerde benseenverbindings is triviaal met die voorgestelde oplosmiddelsisteem. Hoogs aanvaarbare skeiding van fenoliese verbindings van die piridiene en aromatiese nitriele is vermag. Die skeiding van fenol en anilien is nie so goed nie, maar is nog steeds aanvaarbaar. Die optimum oplosmiddel tot voer, water tot oplosmiddel en heksaan tot voer is as 3.0, 5.0 en 0.25 vasgestel. Binêre interaksie parameters vir die NRTL vergelyking is verkry d.m.v. regressie van die ewewigsdata wat deur die enkelladingstoetse gegenereer is. Die NRTL model het die ewewigsdata goed gepas. Die voorgestelde oplosmiddelsisteem is op loodsaanlegvlak getoets. Die werking van die ekstraksie kolom is ge-optimeer met In sintetiese voerstroom wat uit m-kresol, pkresol, anilien en o-tolunitriel bestaan. Die optimum oplosmiddel verhoudings en bedryfstoestande is verder toegepas op 'n industriële swaar naftastroom. 'n Fenoliese suiwerheid van 99.75% is behaal met hierdie stroom. Die ooreenkomstige fenoliese herwinning was groter as 91%. Die voorgestelde skeidingsproses, insluitende oplosmiddelherwinning is gesimuleer met die NRTL model wat op die eksperimentele data gepas is. 'n Enkele stroom wat bestaan het uit al die komponente wat in die enkelladingstoetse gebruik is, is as die voerstroom tot die gesimuleerde proses gespesifiseer. 'n Finale gesimuleerde fenoliese produksuiwerheid van 99.5% en herwinning groter as 94% is na oplosmiddelherwinning behaal. Die optimum oplosmiddel tot voer, heksaan tot voer en water tot oplosmiddel verhoudings is vasgestel as 3.0, 5.0 en 0.25 onderskeidelik vir beide die gesimuleerde proses en die loodsaanleg toetse. Die voorgestelde skeidingsproses kan dus 'n hoogs suiwer fenoliese produk uit pirolisestrome herwin. Verdere ontwikkeling van die proses is in die industrie begin.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/52576
This item appears in the following collections: