Real time full circuit driving simulation system

Louw, Nicolaas Hendrik (2004-12)

Thesis (MScEng)--Stellenbosch Universit, 2004.

Thesis

ENGLISH ABSTRACT: The requirements regarding the quality of engines and vehicles have increased constantly, requiring more and more sophisticated engine testing. At the same time, there is a strong demand to reduce lead time and cost of development. For many years steady state engine testing was the norm using standard principles of power absorption. Since the mid 1980's increasing importance has been attached to the optimisation of transient engine characteristics and the simulation of dynamic real world driving situations on engine test stands. This has led to the use of bi-directional DC or AC regenerative dynamometers a practice now known as dynamic engine testing. Interfacing a computer with vehicle simulation software to an engine on a dynamic test stand and using "hardware in the loop" techniques, enables the simulation of real world driving situations in a test facility. In dynamic engine testing a distinction can be made between simulation testing and transient testing. In simulation testing the set point values are predetermined whereas in transient testing a model generates set point values in real time. Speeds and loads are calculated in real time on the basis of real time measurements. The model can be in the form of a human or driver simulation. This project involved the application of dynamic engine testing to simulating a racing application. It is termed Real Time Full Circuit Driving Simulation System due to the simulation of a race car circling a race track, controlled by a driver model and running the engine on a dynamic test bench in real time using "hardware in the loop" techniques. By measuring the simulated lap times for a certain engine configuration on the test bench in real time, it is possible to select the optimal engine set-up for every circuit. The real time nature of the simulation subjects the engine on the test bench to similar load and speed conditions as experienced by its racing counterpart in the race car yielding relevant results. The racing simulation was achieved by finding a suitable dynamic vehicle model and a three dimensional race track model, developing a control strategy, programming the software and testing the complete system on a dynamic test stand. In order to verify the simulation results it was necessary to conduct actual track testing on a representative vehicle. A professional racing driver completed three flying laps of the Killarney racing circuit in a vehicle fitted with various sensors including three axis orientation and acceleration sensors, a GPS and an engine control unit emulator for capturing engine data. This included lap time, vehicle accelerations, engine speed and manifold pressure, an indicator of driver input. The results obtained from the real time circuit simulation were compared to actual track data and the results showed good correlation. By changing the physical engine configuration in the hardware and gear ratios in the software, comparative capabilities of the system were evaluated. Again satisfactory results were obtained with the system clearly showing which configuration was best suited for a certain race track. This satisfies the modem trend of minimizing costs and development time and proved the value of the system as a suitable engineering tool for racing engine and drive train optimisation. The Real Time Full Circuit Driving Simulation System opened the door to further development in other areas of simulation. One such area is the driveability of a vehicle. By expanding the model it would be possible to evaluate previously subjective characteristics of a vehicle in a more objective manner.

AFRIKAANSE OPSOMMING: Die vereistes om die kwaliteit van enjins en voertuie te verhoog, word daagliks hoër. Meer gesofistikeerde enjintoetse word daarom vereis. Terselfdertyd is dit 'n groot uitdaging om die tydsduur en koste van ontwikkeling so laag as moontlik te hou. Gestadigde toestand enjintoetse, wat op die prinsiep van krag absorpsie werk, was vir baie jare die norm. Vanaf die middel tagtigerjare het die optimering van dinamiese enjinkarakteristieke en die simulasie van werklike bestuursituasies op enjintoetsbanke van al hoe groter belang geword. Die gevolg was die gebruik van twee rigting wisselof gelykstroomdinamometers en staan vandag bekend as dinamiese enjintoetsing. Deur 'n rekenaar met simulasiesagteware aan 'n enjin op 'n dinamiese toetsbank te koppel, word die moontlikheid geskep om enige werklike bestuursituasies van 'n voertuig te simuleer in die enjintoetsfasiliteit. Dinamiese enjintoetse kan opgedeel word in simulasietoetse en oorgangstoestandtoetse. By laasgenoemde genereer 'n "bestuurdersmodel" die beheerwaardes intyds deur te kyk na intydse metings terwyl by simulasietoetse die beheerwaardes vooraf bepaal word. Die "bestuurder" kan in die vorm van 'n persoon of rekenaarsimulasie wees. Die projek behels die toepassing van dinamiese enjintoetse vir renbaansimulasie en staan bekend as'n Intydse, Volledige Renbaansisteem weens die simulasie van 'n renmotor om 'n renbaan, onder die beheer van 'n bestuurdersmodel. Dit geskied terwyl die enjin intyds op 'n dinamiese enjintoetsbank loop en gekoppel is aan die simulasie. Deur die intydse, gesimuleerde rondtetye te analiseer, word die moontlikheid geskep om die enjinkonfigurasie te optimeer vir 'n sekere renbaan. Dit is bereik deur die keuse van 'n gepaste dinamiese voertuigmodel, 'n driedimensionele renbaanmodel, ontwikkeling van 'n beheermodel, programmering van die sagteware en integrasie van die dinamiese enjintoetsstelsel. Die simulasieresultate verkry is gestaaf deur werklike renbaantoetse. 'n Professionele renjaer het drie rondtes van die Killarney renbaan voltooi in 'n verteenwoordigende voertuig wat toegerus was met verskeie sensors o.a. drie as versnellings- en orientasiesensors, GPS en 'n enjinbeheereenheidemmuleerder vir die verkryging en stoor van enjindata. Die sensors het data versamel wat insluit rondtetyd, voertuigversnellings, enjinspoed en inlaatspruitstukdruk. Die korrelasie tussen die simulasie waardes en werklik gemete data was van hoë gehalte. Deur die fisiese enjinkonfigurasie te verander in die hardeware en ratverhoudings in die sagteware, is die vergelykbare kapasiteite van die renbaansimulasie geevalueer. Die resultate was weer bevredigend en die simulasie was in staat om die beste enjinkonfigurasie vir die renbaan uit te wys. Dit bevredig die moderne neiging om koste en ontwikkelingstyd so laag as moontlik te hou. Sodoende is bewys dat die stelsel waarde in die ingenieurswêreld het. 'n Intydse, Volledige Renbaansisteem die skep die geleentheid vir verdere ontwikkeling op verskeie terreine van simulasie. Een so 'n veld is die bestuurbaarheid van 'n voertuig. Deur die model verder te ontwikkel word die moontlikheid geskep om voorheen subjektiewe karakteristieke van 'n voertuig meer wetenskaplik te analiseer.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/50077
This item appears in the following collections: