Show simple item record

dc.contributor.advisorVan Niekerk, Adriaan
dc.contributor.authorStephenson, Garth Royen_ZA
dc.contributor.otherUniversity of Stellenbosch. Faculty of Arts and Social Sciences. Dept. of Geography and Environmental Studies.
dc.date.accessioned2010-02-24T07:41:14Zen_ZA
dc.date.accessioned2010-08-13T15:02:02Z
dc.date.available2010-02-24T07:41:14Zen_ZA
dc.date.available2010-08-13T15:02:02Z
dc.date.issued2010-03
dc.identifier.urihttp://hdl.handle.net/10019.1/4363
dc.descriptionThesis (MSc (Geography and Environmental Studies))--University of Stellenbosch, 2010.
dc.description.abstractENGLISH ABSTRACT: Supervised classifiers are the most popular approach for image classification due to their high accuracies, ease of use and strong theoretical grounding. Their primary disadvantage is the high level of user input required during the creation of the data needed to train the classifier. One alternative to supervised classification is an expert-system rule-based approach where expert knowledge is used to create a set of rules which can be applied to multiple images. This research compared supervised and expert-system rule-based approaches for forest mapping. For this purpose two SPOT 5 images were acquired and atmospherically corrected. Field visits, aerial photography, high resolution imagery and expert forestry knowledge were used for the compilation of the training data and the development of a rule-set. Both approaches were evaluated in an object-orientated environment. It was found that the accuracy of the resulting maps was equivalent, with both techniques returning an overall classification accuracy of 90%. This suggests that cost-effectiveness is the decisive factor for determining which method is superior. Although the development of the rule-set was time-consuming and challenging, it did not require any training data. In contrast, the supervised approach required a large number of training areas for each image classified, which was time-consuming and costly. Significantly more training areas will be required when the technique is applied to large areas, especially when multiple images are used. It was concluded that the rule-set is more cost-effective when applied at regional scale, but it is not viable for mapping small areas.en
dc.description.abstractAFRIKAANSE OPSOMMING: Gerigte klassifiseerders is die gewildste benadering tot beeldklassifikasie as gevolg van hulle hoë graad van akkuraatheid, maklike aanwending en kragtige teoretiese fundering. Die primere nadeel van gerigte klassifikasie is die hoë vlak van gebruikersinsette wat benodig word tydens die skepping van opleidingsdata. 'n Alternatief vir gerigte klassifikasie is 'n deskundige stelsel waarin ‘n reëlgebaseerde benadering gevolg word om deskundige kennis aan te wend vir die opstel van 'n stel reëls wat op meervoudige beelde toegepas kan word. Hierdie navorsing het gerigte en deskundige stelsel benaderings toegepas vir bosboukartering om die twee benaderings met mekaar te vergelyk. Vir dié doel is twee SPOT 5 beelde verkry en atmosferies gekorrigeer. Veldbesoeke, lugfotografie, hoë-resolusie beelde en deskundige bosboukennis is aangewend om opleidingsdata saam te stel en die stel reëls te ontwikkel. Beide benaderings is in 'n objekgeoriënteerde omgewing beoordeel. Die akkuraatheidsvlakke van die resulterende kaarte was ewe hoog vir beide tegnieke met 'n algehele klassifikasie-akkuraatheid van 90%. Dit wil dus voorkom asof koste-effektiwiteit eerder as akkuraatheid die deurslaggewende faktor is om te bepaal watter metode die beste is. Alhoewel die ontwikkeling van die stel reëls tydrowend en uitdagend was, het dit geen opleidingsdata vereis nie. In teenstelling hiermee is 'n groot aantal opleidingsgebiede geskep vir elke beeld wat met gerigte klassifikasie verwerk is – 'n tydrowende en duur opsie. Dit is duidelik dat meer opleidingsgebiede benodig sal word wanneer die tegniek op groot gebiede toegepas word, veral omdat meervoudige beelde gebruik sal word. Gevolglik sal die stel reëls meer kosteeffektief wees wanneer dit op streekskaal toegepas word. ‘n Deskundige stelsel benadering is egter nie lewensvatbaar vir die kartering van klein gebiede nie.af
dc.format.extent60 p. : ill., maps
dc.language.isoen
dc.publisherStellenbosch : University of Stellenbosch
dc.subjectRemote sensingen_ZA
dc.subjectSupervised rule-set classificationen_ZA
dc.subjectForest mappingen_ZA
dc.subjectDissertations -- Earth sciencesen
dc.subjectTheses -- Earth sciencesen
dc.titleA comparison of supervised and rule-based object-orientated classification for forest mappingen_ZA
dc.typeThesis
dc.rights.holderUniversity of Stellenbosch
 Find Full text

Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record