Performance of an axial flow helium compressor under high through-flow conditions

De Wet, Christiaan Louis (2010-03)

Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2010.

Thesis

ENGLISH ABSTRACT: The purpose of this investigation is to determine the performance of an axial ow compressor operating in a closed loop helium cycle under high through- ow conditions. The GTHTR300 four-stage helium test compressor was chosen for this investigation. Limited information on the helium test compressor's blade pro les are available, therefore a mathematical model was developed to calculate the blade geometries based on the theory of Lieblein and Aungier. A locally available three-stage compressor was used to con rm whether the mathematical model calculated the blade pro le geometries correctly. The Stellenbosch University Compressor Code (SUCC), an axisymmetric inviscid through- ow code, was used to compare the performance of the calculated three-stage compressor blade geometries with available experimental data. Excellent correlation was obtained, thus it was concluded that the mathematical model as well as the SUCC could be used to predict the performance of an axial ow compressor. The blade geometries of the helium test compressor were calculated and the pressure ratio and e ciency predictions of the SUCC correlated well with the experimental data. The helium test compressor was simulated to verify the calculated blade geometries further using the Computational Fluid Dynamics (CFD) package NUMECA FINE /Turbo. The FINE /Turbo pressure ratio and e ciency predictions compared adequately with the SUCC and available experimental data, especially in the design region. At high mass ow rates the stator blade row experiences negative incidence stall which results in a large recirculation zone in the stator blade wake.

AFRIKAANSE OPSOMMING: Die doel van hierdie ondersoek is om vas te stel wat die werkverrigting is van 'n aksiale kompressor in 'n geslote lus helium siklus onderhewig aan hoë deurvloei kondisies. Die GTHTR300 vier-stadium helium toets kompressor is gekies vir die ondersoek. Daar is egter beperkte inligting oor die helium kompressor se lem geometrie, dus is 'n wiskundige model ontwikkel om dit te bereken gebaseer op die werk van Lieblein en Aungier. Om te bevestig dat die lem geometrie akkuraat was, was die lem geometrie van die 'n plaaslike beskikbare drie-stadium kompressor bereken. Die Stellenbosch University Compressor Code (SUCC), 'n aksisimmetriese nie-viskeuse deurvloei kode, is gebruik om die prestasie van die berekende lem geometrie met beskikbare eksperimentele data te vergelyk. Uitstekende korrelasie is verkry vir die drukverhouding en benuttingsgraad resultate, dus is die gevolgtrekking gemaak dat die wiskundige model sowel as die SUCC gebruik kon word om die lem geometrie en werkverrigting van aksiale kompressors te bereken en voorspel. Die helium toets kompressor is gesimuleer met behulp van die numeriese vloei-dinamika pakket NUMECA FINE /Turbo om die berkende lem geometrie verder te veri eer. Die FINE /Turbo drukverhouding en benuttingsgraad resultate het goed gekorreleer met beide die SUCC resultate en eksperimentele data, veral in die ontwerpsgebied. Teen hoë massa vloei tempo's vind daar groot wegbreking teen negatiewe invalshoek plaas in die stator lemry en dit veroorsaak 'n hersirkulasie sone in die naloop van die stator lem.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/4333
This item appears in the following collections: