Solar roof tiles : towards a macro-economic model

Mokheseng, Motale Ben (2010-03)

Thesis (MPhil (Public Management and Planning))--University of Stellenbosch, 2010.

Thesis

ENGLISH ABSTRACT: The thesis examines whether a residential solar power system (comprising a solar photovoltaic [PV] system and a solar water heater [SWH]), a demand-side option, has a lower life-cycle cost than a coal-fired power plant, a supply-side option, or vice versa. It also investigates whether a million residential solar power systems could potentially replace a 4 800 MW coal-fired power plant in South Africa. The study also explores, should a million solar power systems be installed on residential units, what the total energy output, the equivalent in coal-fired generation capacity, and the comparative costs of the two power systems would be. The common belief is that solar PV technology is unviable for electricity production because it is too expensive compared to coal-based electricity. Statements such as these are made because the initial capital costs (procurement costs) are often used as the primary (and sometimes only) criterion for project, equipment or system selection based on a simple payback period. Due to life-cycle stages, often the real costs of the project or equipment are not reflected by the upfront capital costs. In this thesis, a methodology is developed to investigate the life-cycle cost effectiveness of a residential solar power system (comprising a 5 kW PV roof tile system and a 300 litre SWH) and a 4 800 MW coal-fired plant in order to choose the most cost effective alternative in terms of the project‟s functional unit (kWh). A 5 kW solar PV roof tile system and a 300 litre SWH system have been installed at Lynedoch Eco-village. The operational results from this experiment was used as a basis for developing a model for a million residential rooftops that will have a 5 kW PV roof tile system plus a 300 litre SWH system. The focus of the million rooftops model is operating costs over the lifetime of the solar power system, on the assumption that the capital costs will be financed from coal-fired generation capacity that will no longer be needed. The results of the study indicate that a residential solar power system is most cost effective over a 40-year life-cycle period in terms of the project‟s functional unit (kWh). The thesis also finds that a million residential solar power systems (comprising a 5 kW PV system and a 300 litre SWH) could potentially replace 40% of a 4 800 MW coal-fired generation capacity. In total, 2.3 million residential solar power systems are needed to replace a 4 800 MW coal-fired generation capacity. Emissions of 37 million tonnes of CO2 equivalent per year could be avoided if 2.3 million residential solar power systems were to be installed. However, the investment needed to install Lynedoch solar power systems (comprising a 5 kW PV roof tile system and a 300 litre SWH) on 2.3 million residential rooftops is fifteen times more than the investment needed to build a 4 800 MW coal-fired power plant. The investment needed to install 2.3 million Lomold residential solar power systems (comprising a 5 kW Lomold PV roof tile system and a 300 litre SWH) is six and half times more than the investment needed for a 4 800 MW coal-fired power plant. It was established during the study that if Lynedoch residential solar power systems were to be installed on the roofs of a million South African households, 152 308 jobs would be created in the manufacturing and installation supply chain. For the 2.3 million Lynedoch residential solar power systems needed to replace an entire 4 800 MW of coal-fired generation capacity, 340 690 jobs would be created in the manufacturing and installation supply chain. Installation of a million Lomold residential solar power systems would create 63 929 jobs in the supply chain. Installation of 2.3 million Lomold residential solar power systems would essentially create 147 298 jobs.

AFRIKAANSE OPSOMMING: Die tesis stel ondersoek in na die vraag of ʼn residensiële sonkragstelsel (bestaande uit ʼn fotovoltaïese (FV) stelsel en ʼn sonwaterverhitter [SWV]), ʼn vraagkant-opsie, ʼn laer lewensikluskoste as ʼn steenkoolkragsentrale, ʼn aanbodkant-opsie, het of omgekeerd. Daar word ook ondersoek of ʼn miljoen residensiële sonkragstelsels potensieel ʼn 4 800 MW-steenkoolkragsentrale in Suid-Afrika kan vervang. Verder word daar ondersoek, indien ʼn miljoen sonkragstelsels op residensiële eenhede aangebring word, wat die totale energie-uitset, die gelykstaande uitset van steenkool-opwekkingskapasiteit en die vergelykende koste van die twee kragstelsels sal wees. Die algemene oortuiging is dat sonkrag- FV tegnologie ongeskik is vir elektrisiteitsopwekking omdat dit te duur is in vergelyking met steenkoolgebaseerde elektrisiteit. Sodanige stellings word gemaak omdat die aanvanklike kapitaalkoste (aankoopkoste), gegrond op ʼn eenvoudige terugbetalingstydperk, dikwels as die primêre (en soms selfs die enigste) maatstaf tydens die keuse van ʼn projek, toerusting of stelsel dien. Die werklike kostes van ʼn projek of toerusting word egter dikwels nie in kapitaalkostes weerspieël nie, omdat hierdie maatstaf nie totale lewensikluskoste in ag neem nie. In hierdie tesis word ʼn metodologie ontwikkel om die lewensiklus-kostedoeltreffendheid van ʼn residensiële stelsel (bestaande uit ʼn 5 kW FV-dakteëlstelsel en ʼn 300 liter-SWV) en ʼn 4 800 MW-steenkoolkragsentrale te bereken sodat die kostedoeltreffendste opsie in terme van die projek se funksionele eenheid (kWh) gekies kan word. ʼn Residensiële sonkragstelsel bestaande uit ʼn 5 kW FV-dakteëlstelsel en ʼn 300 liter-SWV is in Lynedoch Eco-village geïnstalleer. Die operasionele resultate van die eksperiment is gebruik as grondslag vir die ontwikkeling van ʼn model vir die installering van ʼn 5 kW sonkrag-FV-dakteëlstelsel en ʼn 300 liter-SWV op ʼn miljoen residensiële dakke. Die fokus van die hierdie model is die operasionele koste oor die leeftyd van die sonkragstelsel, gegrond op die aanname dat die kapitaalkoste gefinansier sal word deur fondse wat nie meer vir die oprig van steenkoolkragsentrales benodig word nie. Die tesis se bevindinge dui daarop dat ʼn residensiële sonkragstelsel die kostedoeltreffendste is oor ʼn lewensiklustydperk van 40 jaar in terme van die projek se funksionele eenheid (kWh). Daar is ook gevind dat ʼn miljoen residensiële sonkragstelsels (bestaande uit ʼn 5 kW FV-dakteëlstelsel en ʼn 300 liter-SWV) potensieel 40% van ʼn 4 800 MW-steenkoolkragsentrale se kapasiteit kan vervang. Altesaam 2.3 miljoen residensiële sonkragstelsels is nodig om die kapasitiet van ʼn 4 800 MW-steenkoolkragsentrale ten volle te vervang. Gasvrystelling van 37 miljoen ton CO2-ekwivalent per jaar kan vermy word as 2.3 miljoen residensiële sonkragstelsels geïnstalleer word. Die belegging wat benodig word om Lynedoch-sonkragstelsels (bestaande uit ʼn 5 kW FV-dakteëlstelsel en ʼn 300 liter-SWV) op 2.3 miljoen residensiële dakke te installeer, is egter vyftien keer groter as die belegging wat benodig word om ʼn 4 800 MW-steenkoolkragsentrale te bou. Die belegging wat benodig word om Lomold- residensiële sonkragstelsels (bestaande uit ʼn 5 kW Lomold-FV-dakteëlstelsel en ʼn 300 liter-SWV) te installeer, is ses en ʼn half keer groter as die belegging wat nodig is om ʼn 4 800 MW-steenkoolkragsentrale op te rig. Die studie het bepaal dat as Lynedoch- residensiële sonkragstelsels op die dakke van ʼn miljoen Suid-Afrikaanse huishoudings geïnstalleer word, 152 308 werksgeleenthede in die vervaardigings- en installeringsaanbodketting geskep sal word. Met die 2.3 miljoen Lynedoch- residensiële sonkragstelsels wat benodig word om ʼn 4 800 MW-steenkoolkragsentrale te vervang, sal 340 690 werksgeleenthede in die vervaardigings- en installeringsaanbodketting geskep word. Die installering van ʼn miljoen Lomold- residensiële sonkragstelsels sal 63 929 werksgeleenthede in die voorsieningsketting skep, terwyl die installering van 2.3 miljoen Lomold- residensiële sonkragstelsels 147 298 werksgeleenthede sal skep.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/4314