# Introduction to graphical models with an application in finding coplanar points

Roux, Jeanne-Marie (2010-03)

Thesis (MSc (Applied Mathematics))--University of Stellenbosch, 2010.

Thesis

ENGLISH ABSTRACT: This thesis provides an introduction to the statistical modeling technique known as graphical models. Since graph theory and probability theory are the two legs of graphical models, these two topics are presented, and then combined to produce two examples of graphical models: Bayesian Networks and Markov Random Fields. Furthermore, the max-sum, sum-product and junction tree algorithms are discussed. The graphical modeling technique is then applied to the specific problem of finding coplanar points in stereo images, taken with an uncalibrated camera. Although it is discovered that graphical models might not be the best method, in terms of speed, to use for this appliation, it does illustrate how to apply this technique in a real-life problem.

AFRIKAANSE OPSOMMING: Hierdie tesis stel die leser voor aan die statistiese modelerings-tegniek genoemd grafiese modelle. Aangesien grafiek teorie en waarskynlikheidsleer die twee bene van grafiese modelle is, word hierdie areas aangespreek en dan gekombineer om twee voorbeelde van grafiese modelle te vind: Bayesian Netwerke en Markov Lukrake Liggaam. Die maks-som, som-produk en aansluitboom algoritmes word ook bestudeer. Nadat die teorie van grafiese modelle en hierdie drie algoritmes afgehandel is, word grafiese modelle dan toegepas op ’n spesifieke probleem— om punte op ’n gemeenskaplike vlak in stereo beelde te vind, wat met ’n ongekalibreerde kamera geneem is. Alhoewel gevind is dat grafiese modelle nie die optimale metode is om punte op ’n gemeenskaplike vlak te vind, in terme van spoed, word die gebruik van grafiese modelle wel ten toongestel met hierdie praktiese voorbeeld.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/4094

This item appears in the following collections: