# Strange particle production via the weak interaction

Thesis (MSc (Physics))--University of Stellenbosch, 2009.

Thesis

In this thesis a general relativistic formalism for neutrino-induced weak production of strange particles is presented. In our formalism it is shown that the differential cross section is constructed as a contraction between a leptonic tensor and a hadronic tensor. The electroweak theory of Glashow, Salam and Weinberg is used to calculate the leptonic tensor exactly. The hadronic current is determined from the newly derived general form of the weak hadronic current which is expressed in terms of eighteen invariant amplitudes that parametrize the hadron vertex. The Born diagram is used to approximate the unknown hadronic vertex and the numerical calculation is made by evaluating the tree diagrams in terms of standard weak form factors and the strong coupling constants in the framework of the Cabibbo theory and SU(3) symmetry. The investigation is made for charged current reactions in terms of the angular distribution of the differential cross section with respect to the outgoing kaon angle and the results are discussed.