An investigation of coupling mechanisms in narrowband microwave filters

Hansmann, Esti Mari (2009-03)

Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2008.


The design of an aperture-coupled coaxial diplexer for R-band, is presented. To improve the ease of tuning, a tuning procedure for the diplexer with the aid of a MATLAB application with graphical user interface, is developed. Final experimental results show good agreement between the circuit model and the physical structure. Final measurements of the diplexer structure achieved 18.83 dB and 21.52 dB return loss in the lower and upper frequency band respectively and insertion loss of 0.58 dB and 0.61 dB was measured for the two frequency bands. Isolation were measured as 74 dB at 2.01 GHz and 84 dB at 2.17 GHz The accuracy of two techniques for determining coupling coefficients in coaxial and waveguide resonators are investigated. One method is the Eigenmode Method for determining the coupling coefficients in a physical resonator and the other the circuit model representation, utilising inverters to represent the coupling between resonators. Results showed that marked differences occur when using the three different inverter configurations to enable filter dimensioning for a given coupling coefficient. Four waveguide filters, utilising posts and irises respectively, are designed using dimensions obtained from the three inverter configurations as well as the Eigenmode method for a certain coupling coefficient.

Please refer to this item in SUNScholar by using the following persistent URL:
This item appears in the following collections: